Scaling Invariance in a Time-Dependent elliptical Billiard

We study some dynamical properties of a classical time-dependent elliptical billiard. We consider periodically moving boundary and collisions between the particle and the boundary are assumed to be elastic. Our results confirm that although the static elliptical billiard is an integrable system, after introducing time-dependent perturbation on the boundary the unlimited energy growth is observed. The behavior of the average velocity is described using scaling arguments.

[1]  P. Schmelcher,et al.  Evolutionary phase space in driven elliptical billiards , 2009, 0904.3636.

[2]  Edson D. Leonel,et al.  A ug 2 01 0 Fermi acceleration and suppression of Fermi acceleration in a time-dependent Lorentz Gas , 2010 .

[3]  P V E McClintock,et al.  Fermi-Ulam accelerator model under scaling analysis. , 2004, Physical review letters.

[4]  Michael A. Lieberman,et al.  Stochastic and Adiabatic Behavior of Particles Accelerated by Periodic Forces , 1972 .

[5]  Dmitry Turaev,et al.  Fermi acceleration in non-autonomous billiards , 2008 .

[6]  Alexander Loskutov,et al.  Fermi acceleration and scaling properties of a time dependent oval billiard. , 2009, Chaos.

[7]  P. J. Holmes The dynamics of repeated impacts with a sinusoidally vibrating table , 1982 .

[8]  Edson D. Leonel,et al.  A hybrid Fermi–Ulam-bouncer model , 2005 .

[9]  Nenad Pavin,et al.  Chaotic dynamics of the elliptical stadium billiard in the full parameter space , 2005, nlin/0507014.

[10]  Alexander Loskutov,et al.  Time-dependent focusing billiards and macroscopic realization of Maxwell's Demon , 2010 .

[11]  R. H. Cohen,et al.  Fermi acceleration revisited , 1980 .

[12]  Marko Robnik,et al.  Classical dynamics of a family of billiards with analytic boundaries , 1983 .

[13]  Joseph Ford,et al.  Numerical study of billiard motion in an annulus bounded by non-concentric circles , 1982 .

[14]  Alexander Loskutov,et al.  Properties of Some Chaotic Billiards with Time-Dependent Boundaries , 2000 .

[15]  L. Bunimovich,et al.  Suppressing Fermi acceleration in a driven elliptical billiard. , 2010, Physical review letters.

[16]  Peter Schmelcher,et al.  Phase-space composition of driven elliptical billiards and its impact on Fermi acceleration. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  P. Schmelcher,et al.  Tunable fermi acceleration in the driven elliptical billiard. , 2008, Physical review letters.

[18]  Jair Koiller,et al.  Static and time-dependent perturbations of the classical elliptical billiard , 1996 .

[19]  Dmitry Turaev,et al.  Communications in Mathematical Physics Unbounded Energy Growth in Hamiltonian Systems with a Slowly Varying Parameter , 2008 .

[20]  Thomas L. Vincent,et al.  Controlling a Bouncing ball , 2000, Int. J. Bifurc. Chaos.

[21]  Y. Sinai,et al.  Dynamical systems with elastic reflections , 1970 .

[22]  L. Bunimovich On the ergodic properties of nowhere dispersing billiards , 1979 .

[23]  V Lopac,et al.  Chaotic dynamics and orbit stability in the parabolic oval billiard. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  L. Pustyl'nikov,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: Construction of periodic solutions in an infinite system of Fermi-Pasta-Ulam ordinary differential equations, stability, and KAM theory , 1995 .

[25]  Luna-Acosta Regular and chaotic dynamics of the damped Fermi accelerator. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[26]  J. Jeans Origin of Cosmic Radiation. , 1931, Nature.

[27]  Sylvie Oliffson Kamphorst,et al.  Bounded gain of energy on the breathing circle billiard , 1998, chao-dyn/9811023.

[28]  Edson D. Leonel,et al.  Suppressing Fermi acceleration in a two-dimensional non-integrable time-dependent oval-shaped billiard with inelastic collisions , 2010 .

[29]  Edson D. Leonel,et al.  Describing Fermi acceleration with a scaling approach: The Bouncer model revisited , 2008 .

[30]  Richard M. Everson,et al.  Chaotic dynamics of a bouncing ball , 1986 .

[31]  L. Pustyl'nikov,et al.  On Ulam's problem , 1983 .

[32]  Marko Robnik,et al.  In-flight dissipation as a mechanism to suppress Fermi acceleration. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.