A geodynamic model linking Cretaceous orogeny, arc migration, foreland dynamic subsidence and marine ingression in southern South America

Abstract This study synthesizes the tectonomagmatic evolution of the Andes between 35°30′S to 48°S with the aim to spotlight early contractional phases on Andean orogenic building and to analyze their potential driving processes. We examine early tectonic stages of the different fold-thrust belts that compose this Andean segment. Additionally, we analyzed the spatio-temporal magmatic arc evolution as a proxy of dynamic changes in Andean subduction during critical tectonic stages of orogenic construction. This revision proposes a hypothesis related the existence of a continuous large-scale flat subduction setting in Cretaceous times with a similar size to the present-largest flat-slab setting on earth. This potential process would have initiated diachronically in the late Early Cretaceous and achieved full development in Late Cretaceous to earliest Paleocene times, constructing a series of fold-thrust belts on the retro-arc zone from 35°30′S to 48°S. Moreover, we assess major paleogeographic changes that took place during flat-slab full development in Maastrichtian-Danian times. At this moment, an enigmatic Atlantic-derived marine flooding covered the Patagonian foreland reaching as far as the Andean foothills. Based on flexural and dynamic topography analyses, we suggest that focused dynamic subsidence at the edge of the flat-slab may explain sudden marine ingression previously linked to continental tilting and orogenic loading during a high sea level global stage. Finally, flat-subduction destabilization could have triggered massive outpouring of synextensional intraplate volcanic rocks in southern South America and the arc retraction in late Paleogene to early Neogene times.

[1]  S. N. Césari,et al.  High-precision late Aptian Pb/U age for the Punta del Barco Formation (Baqueró Group), Santa Cruz Province, Argentina , 2011 .

[2]  J. Homovc,et al.  Hydrocarbon exploration potential within intraplate shear-related depocenters: Deseado and San Julian basins, southern Argentina , 2001 .

[3]  G. L. Farmer,et al.  Hydrodynamic mechanism for the Laramide orogeny , 2011 .

[4]  P. Leal,et al.  Control tectónico de las secuencias volcaniclásticas neocomianas y paleogeografía en la zona del Lago La Plata (45°S). Sector interno de la faja plegada y corrida de los lagos La Plata y Fontana , 2004 .

[5]  T. Wilson Transition from back-arc to foreland basin development in the southernmost Andes: Stratigraphic record from the Ultima Esperanza District, Chile , 1991 .

[6]  W. Snyder,et al.  Plate tectonics of the Laramide orogeny , 1978 .

[7]  Y. Lagabrielle,et al.  Very shallow melting of oceanic crust during spreading ridge subduction: Origin of near‐trench Quaternary volcanism at the Chile Triple Junction , 2003 .

[8]  S. Kay,et al.  The Somuncura Large Igneous Province in Patagonia: Interaction of a Transient Mantle Thermal Anomaly with a Subducting Slab , 2007 .

[9]  A. Folguera,et al.  Tectonic evolution of the North Patagonian Andes (41°–44° S) through recognition of syntectonic strata , 2016 .

[10]  S. Martínez,et al.  Paleobiogeography of the Danian molluscan assemblages of Patagonia (Argentina) , 2015 .

[11]  P. Groeber OBSERVACIONES GEOLÓGICAS A LO LARGO DEL MERIDIANO 70. 2. HOJAS SOSNEAO Y MAIPO , 2019 .

[12]  A. Demant,et al.  Cretaceous slab segmentation in southwestern Gondwana , 2009, Geological Magazine.

[13]  T. Grove,et al.  The Role of H 2 O in Subduction Zone Magmatism , 2012 .

[14]  S. Weaver,et al.  Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysen, southern Chile , 1999, Journal of the Geological Society.

[15]  F. Dávila,et al.  Tectonic and dynamic controls on the topography and subsidence of the Argentine Pampas: The role of the flat slab , 2010 .

[16]  T. Zapata,et al.  Structural evolution and magmatic characteristics of the Agrio fold-and-thrust belt , 2006 .

[17]  L. Giambiagi,et al.  Temporal and spatial relationships of thick- and thin-skinned deformation: A case study from the Malargüe fold-and-thrust belt, southern Central Andes , 2008 .

[18]  C. E. Weaver The Roca Formation in Argentina , 1927 .

[19]  C. Currie,et al.  Farallon plate dynamics prior to the Laramide orogeny: Numerical models of flat subduction , 2016 .

[20]  B. Stöckhert,et al.  Postmagmatic cooling and late Cenozoic denudation of the North Patagonian Batholith in the Los Lagos region of Chile, 41°−42°15′S , 2006 .

[21]  A. Lahsen,et al.  Ages and geochemistry of Mesozoic-Eocene back-arc volcanic rocks in the Aysén region of the Patagonian Andes, Chile , 2001 .

[22]  V. Ramos,et al.  Repeated eastward shifts of arc magmatism in the Southern Andes: A revision to the long-term pattern of Andean uplift and magmatism , 2011 .

[23]  M. Spagnuolo,et al.  Late Cretaceous arc rocks in the Andean retroarc region at 36.5°S: Evidence supporting a Late Cretaceous slab shallowing , 2012 .

[24]  A. Di Giulio,et al.  Cretaceous evolution of the Andean margin between 36°S and 40°S latitude through a multi‐proxy provenance analysis of Neuquén Basin strata (Argentina) , 2017 .

[25]  Xian‐Hua Li,et al.  Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model , 2007 .

[26]  M. Franchini,et al.  Magmatic characteristics of the Paleocene Cerro Nevazón region and other Late Cretaceous to Early Tertiary calc-alkaline subvolcanic to plutonic units in the Neuquén Andes, Argentina , 2003 .

[27]  K. Biddle,et al.  Mesozoic Extension and the Formation of Argentine Sedimentary Basins: Chapter 39: Analogs , 1989 .

[28]  M. C. Pomposiello,et al.  Three-dimensional electrical conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean backarc of Argentina near 36.5°S: evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening , 2014 .

[29]  A. Folguera,et al.  Synorogenic foreland rifts and transtensional basins: A review of Andean imprints on the evolution of the San Jorge Gulf, Salta Group and Taubaté Basins , 2015 .

[30]  C. Braitenberg,et al.  New evidence about the subduction of the Copiapó ridge beneath South America, and its connection with the Chilean-Pampean flat slab, tracked by satellite GOCE and EGM2008 models , 2015 .

[31]  Tunik,et al.  Procedencia de areniscas del Grupo Chubut en el área central de la Sierra de San Bernardo. Análisis preliminar , 2004 .

[32]  H. Tavera,et al.  The role of ridges in the formation and longevity of flat slabs , 2015, Nature.

[33]  M. Haschke,et al.  Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21°–26°S) , 2002 .

[34]  V. Ramos,et al.  Malargüe Group (Maastrichtian–Danian) deposits in the Neuquén Andes, Argentina: Implications for the onset of the first Atlantic transgression related to Western Gondwana break-up , 2011 .

[35]  C. Stern,et al.  The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate , 2000 .

[36]  Paul C. Painter,et al.  Estructura , 2019, Fundamentos de Ciencia de Polimeros.

[37]  Shijie Zhong,et al.  Controls on trench topography from dynamic models of subducted slabs , 1994 .

[38]  V. Ramos,et al.  Exhumation of the Neuquén Basin in the southern Central Andes (Malargüe fold and thrust belt) from field data and low-temperature thermochronology , 2015 .

[39]  R. Pankhurst,et al.  Pacific subduction coeval with the Karoo mantle plume: the Early Jurasssic Subcordilleran belt of northwestern Patagonia , 2005, Geological Society, London, Special Publications.

[40]  P. Cobbold,et al.  Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina , 2003 .

[41]  V. Oliveros,et al.  Late Oligocene–early Miocene submarine volcanism and deep-marine sedimentation in an extensional basin of southern Chile: Implications for the tectonic development of the North Patagonian Andes , 2016 .

[42]  B. Carrapa,et al.  Basin evolution of Upper Cretaceous–Lower Cenozoic strata in the Malargüe fold‐and‐thrust belt: northern Neuquén Basin, Argentina , 2016 .

[43]  Víctor A. Ramos Descripción Geológica de la Hoja 33c, Los Chihuidos Norte , 1981 .

[44]  E. Engdahl,et al.  Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin , 2000 .

[45]  B. Bookhagen,et al.  Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes , 2014 .

[46]  J. Tobal,et al.  Patagonian broken foreland and related synorogenic rifting: The origin of the Chubut Group Basin , 2015 .

[47]  R. Charrier,et al.  Tectonostratigraphic evolution of the Andean Orogen in Chile , 2007 .

[48]  D. Scrocca,et al.  Subduction kinematics and dynamic constraints , 2007 .

[49]  D. García-Castellanos,et al.  Modeling the evolution of the Guadalquivir foreland basin (southern Spain) , 2002 .

[50]  C. Conrad,et al.  Mountain building and mantle dynamics , 2013 .

[51]  Paul Duhart,et al.  New time-constraints on provenance, metamorphism and exhumation of the Bahía Mansa Metamorphic Complex on the Main Chiloé Island, south-central Chile , 2008 .

[52]  V. Oliveros,et al.  Early Andean tectonomagmatic stages in north Patagonia: insights from field and geochemical data , 2017, Journal of the Geological Society.

[53]  G. Panza,et al.  Polarized Plate Tectonics , 2015 .

[54]  J. Tobal,et al.  Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41°30′‐43°S) , 2012 .

[55]  S. Kay,et al.  Southern Patagonian plateau basalts and deformation: Backarc testimony of ridge collisions , 1992 .

[56]  L. Giambiagi,et al.  Late Cretaceous Uplift in the Malargüe fold-and-thrust belt (35ºS), southern Central Andes of Argentina and Chile , 2013 .

[57]  H. Leanza Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie , 2009 .

[58]  O. Oncken,et al.  Deformation of the Central Andean Upper Plate System — Facts, Fiction, and Constraints for Plateau Models , 2006 .

[59]  P. Heller,et al.  Dynamic topography and vertical motion of the U.S. Rocky Mountain region prior to and during the Laramide orogeny , 2016 .

[60]  H. Welsink,et al.  Tectonic Evolution and Paleogeography of the Neuquén Basin, Argentina , 1995 .

[61]  G. Z. Valcarce,et al.  Reactivación de estructuras cretácicas durante la deformación miocena, faja plegada del Agrio, Neuquén , 2007 .

[62]  Andrés Bilmes,et al.  Miocene block uplift and basin formation in the Patagonian foreland: The Gastre Basin, Argentina , 2013 .

[63]  V. Manea,et al.  Chilean flat slab subduction controlled by overriding plate thickness and trench rollback , 2012 .

[64]  Arie P. van den Berg,et al.  On the role of subducting oceanic plateaus in the development of shallow flat subduction , 2002 .

[65]  P. Olson,et al.  Formation of seafloor swells by mantle plumes , 1986 .

[66]  P. Kraemer,et al.  Evolución de las cuencas sinorogénicas de la Cordillera Principal entre 35°- 36° S, Malargüe , 2005 .

[67]  M. Tiepolo,et al.  Detrital zircon provenance from the Neuquén Basin (south-central Andes): Cretaceous geodynamic evolution and sedimentary response in a retroarc-foreland basin , 2012 .

[68]  L. Fennell,et al.  Geochemical and tectonic evolution of Late Cretaceous to early Paleocene magmatism along the Southern Central Andes (35-36°S) , 2018, Journal of South American Earth Sciences.

[69]  V. A. Ramos,et al.  Mecanismos y fases de construcción orogénicos del frente oriental andino (36°S, Argentina) , 2013 .

[70]  A. Folguera,et al.  The lagos La Plata and Fontana fold-and-thrust belt: long-lived orogenesis at the edge of western Patagonia , 2004 .

[71]  R. Müller,et al.  Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup , 2016 .

[72]  V. Valencia,et al.  Late Eocene volcanism in North Patagonia (42°30′–43°S): Arc resumption after a stage of within-plate magmatism , 2018 .

[73]  R. Huene,et al.  OBSERVATIONS AT CONVERGENT MARGINS CONCERNING SEDIMENT SUBDUCTION, SUBDUCTION EROSION, AND THE GROWTH , 1991 .

[74]  C. Conrad,et al.  Tethyan closure, Andean orogeny, and westward drift of the Pacific Basin , 2008 .

[75]  V. Ramos,et al.  Tectonic evolution of the Andes of Neuquén: constraints derived from the magmatic arc and foreland deformation , 2005, Geological Society, London, Special Publications.

[76]  E. Carminati,et al.  Slab dip vs. lithosphere age: No direct function , 2005 .

[77]  A. Demant,et al.  Geochronology and petrochemistry of Late Cretaceous-(?)Paleogene volcanic sequences from the eastern central Patagonian Cordillera (45°-45°40'S) , 2007 .

[78]  R. Pankhurst,et al.  The South Patagonian batholith: 150 my of granite magmatism on a plate margin , 2007 .

[79]  T. Jordan,et al.  Extension and basin formation in the southern Andes caused by increased convergence rate: A mid‐Cenozoic trigger for the Andes , 2001 .

[80]  B. Horton,et al.  Sedimentary record of plate coupling and decoupling during growth of the Andes , 2016 .

[81]  W. Collins,et al.  Compressional intracontinental orogens: Ancient and modern perspectives , 2014 .

[82]  Alberto C. Garrido Estratigrafía del Grupo Neuquén, Cretácico Superior de la Cuenca Neuquina (Argentina): nueva propuesta de ordenamiento litoestratigráfico , 2010 .

[83]  M. Strecker,et al.  Late Miocene climate variability and surface elevation in the central Andes , 2010 .

[84]  M. Gurnis,et al.  Cenozoic subsidence and uplift of continents from time-varying dynamic topography , 1997 .

[85]  V. Ramos,et al.  Variable structural controls through time in the Southern Central Andes (~36°S) , 2012 .

[86]  F. Dávila,et al.  Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia , 2014 .

[87]  R. Mitchum,et al.  Evolution of the San Jorge Basin, Argentina , 1990 .

[88]  Horacio N. Canelo,et al.  Mantle Influence on Andean and Pre-Andean Topography , 2018 .

[89]  C. Cingolani,et al.  El basamento cristalino de los Andes norpatagónicos en Argentina: geocronología e interpretación tectónica , 2005 .

[90]  T. Grove,et al.  Kinematic variables and water transport control the formation and location of arc volcanoes , 2009, Nature.

[91]  G. Wörner,et al.  Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): Tracing crustal thickening and magma generation through time and space , 2010 .

[92]  J. Libarkin,et al.  Rapid late Miocene rise of the Bolivian Altiplano: Evidence for removal of mantle lithosphere , 2006 .

[93]  F. Nullo,et al.  Patagonian continental deposits (Cretaceous‐Tertiary) , 2011 .

[94]  M. Suárez,et al.  Cenomanian-? early Turonian minimum age of the Chubut Group, Argentina: SHRIMP U-Pb geochronology , 2014 .

[95]  J. Mescua,et al.  Evolution of the Chos Malal and Agrio fold and thrust belts, Andes of Neuquén: Insights from structural analysis and apatite fission track dating , 2015 .

[96]  Lijun Liu,et al.  Reconstructing Farallon Plate Subduction Beneath North America Back to the Late Cretaceous , 2008, Science.

[97]  P. Molnar,et al.  Lengths of intermediate and deep seismic zones and temperatures in downgoing slabs of lithosphere , 1979 .

[98]  B. Horton,et al.  Paleogene synorogenic sedimentation in the Altiplano plateau and implications for initial mountain building in the central Andes , 2001 .

[99]  R. Giacosa,et al.  Meso-Cenozoic tectonics of the southern Patagonian foreland: Structural evolution and implications for Au–Ag veins in the eastern Deseado Region (Santa Cruz, Argentina) , 2010 .

[100]  P. Cobbold,et al.  Salar de Atacama basin: A record of compressional tectonics in the central Andes since the mid‐Cretaceous , 2006 .

[101]  V. A. Ramos,et al.  Evolución tectónica del Frente Andino en Neuquén , 2009 .

[102]  H. Mehl,et al.  Mesozoic and Cenozoic palaeo-stress fields of the South Patagonian Massif deduced from structural and remote sensing data , 1996, Geological Society, London, Special Publications.

[103]  A. Berg,et al.  A thermo-mechanical model of horizontal subduction below an overriding plate , 2000 .

[104]  Dunyi Liu,et al.  Petrology and SHRIMP U–Pb zircon geochronology of Cordilleran granitoids of the Bariloche area, Argentina , 2011 .

[105]  L. Quevedo,et al.  The Late Jurassic to present evolution of the Andean margin: Drivers and the geological record , 2013 .

[106]  W. Winkler,et al.  Recycling of Proterozoic crust in the Andean Amazon foreland of Ecuador: implications for orogenic development of the Northern Andes , 2008 .

[107]  R. Pilger,et al.  Tectonic controls of late Cretaceous sedimentation, western interior, USA , 1978, Nature.

[108]  O. Müntener,et al.  High precision U/Pb zircon dating of the Chaltén Plutonic Complex (Cerro Fitz Roy, Patagonia) and its relationship to arc migration in the southernmost Andes , 2012 .

[109]  K. Biddle,et al.  MESOZOIC-CENOZOIC PALEOGEOGRAPHIC AND GEODYNAMIC EVOLUTION OF SOUTHERN SOUTH AMERICA , 1988 .

[110]  E. Humphreys,et al.  Post-Laramide removal of the Farallon slab, western United States , 1995 .

[111]  O. Oncken,et al.  Subduction Erosion — the “Normal” Mode of Fore-Arc Material Transfer along the Chilean Margin? , 2006 .

[112]  P. Cobbold,et al.  Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, Northern Chile: Implications for the tectonic evolution of the Central Andes , 2005 .

[113]  J. Silvestro,et al.  La cuenca cenozoica del río Grande y Palauco: edad, evolución y control estructural, faja plegada de Malargüe , 2009 .

[114]  S. Mazzoli,et al.  (Un)Coupled thrust belt‐foreland deformation in the northern Patagonian Andes: New insights from the Esquel‐Gastre sector (41°30′–43°S) , 2016 .

[115]  J. Afonso,et al.  Tertiary tectonics of the sub-Andean region of the North Patagonian Andes, southern central Andes of Argentina (41–42°30′S) , 2005 .

[116]  C. Vérard,et al.  3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations , 2015 .

[117]  A. Folguera,et al.  Tectonic inversion events in the western San Jorge Gulf Basin from seismic, borehole and field data , 2015 .

[118]  T. Ehlers,et al.  End member models for Andean Plateau uplift , 2008 .

[119]  I. Dalziel,et al.  Fossil marginal basin in the southern Andes , 1974, Nature.

[120]  B. Hager Subducted slabs and the geoid: Constraints on mantle rheology and flow , 1983 .

[121]  J. Cembrano,et al.  Magmatism and tectonics in continental Chiloé, Chile (42°–42°30′S) , 1992 .

[122]  F. Dávila,et al.  Dynamic topography in South America , 2013 .

[123]  L. Spalletti,et al.  Cuenca de Ñirihuau , 1989 .

[124]  B. Horton Sedimentary record of Andean mountain building , 2017 .

[125]  M. C. Frisicale,et al.  Cenozoic structural evolution of the Argentinean Andes at 34°40'S: A close relationship between thick and thin-skinned deformation , 2012 .

[126]  M. Manga,et al.  The role of magmatically driven lithospheric thickening on arc front migration , 2014 .

[127]  F. Dávila,et al.  Dynamic uplift during slab flattening , 2015 .

[128]  F. Mégard The Andean orogenic period and its major structures in central and northern Peru , 1984, Journal of the Geological Society.

[129]  T. Stadler,et al.  Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity , 2010, Science.

[130]  R. Drake,et al.  Geochronology of the Lake Region of south-central Chile (39°-42°S): Preliminary results , 1988 .

[131]  S. Manzoni,et al.  The emerging field of geogenomics: Constraining geological problems with genetic data , 2014 .

[132]  R. Müller,et al.  The role of oceanic plateau subduction in the Laramide orogeny , 2010 .

[133]  T. Ehlers,et al.  Onset of Convective Rainfall During Gradual Late Miocene Rise of the Central Andes , 2010, Science.

[134]  J. Likerman,et al.  Cenozoic intraplate tectonics in Central Patagonia: Record of main Andean phases in a weak upper plate , 2017 .

[135]  P. Lafourcade,et al.  Fold belt in the San Jorge Basin, Argentina: an example of tectonic inversion , 1995, Geological Society, London, Special Publications.

[136]  Stephen J. Reynolds,et al.  Cordilleran Benioff zones , 1977, Nature.

[137]  V. Ramos,et al.  Cretaceous deformation of the southern Central Andes: synorogenic growth strata in the Neuquén Group (35° 30′–37° S) , 2017 .

[138]  V. Ramos,et al.  Andean evolution of the Aluminé fold and thrust belt, Northern Patagonian Andes (38°30′–40°30′S) , 2012 .

[139]  A. Hallam The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates , 1989 .

[140]  Bradford H. Hager,et al.  A simple global model of plate dynamics and mantle convection , 1981 .

[141]  S. Kay,et al.  Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes , 2005 .

[142]  M. L. Sánchez,et al.  Modelo de depósito de la Formación Cerro Lisandro: lóbulos de desembocadura y deltas de tipo Gilbert. Cretácico superior, región central de cuenca Neuquina, Argentina , 2014 .

[143]  A. Fildani,et al.  Initiation of the Magallanes foreland basin: Timing of the southernmost Patagonian Andes orogeny revised by detrital zircon provenance analysis , 2003 .

[144]  E. Nelson,et al.  The Patagonian batholith at 48°S latitude, Chile; Geochemical and isotopic variations , 1990 .

[145]  R. Lacassin,et al.  Coupled tectonic evolution of Andean orogeny and global climate , 2015 .

[146]  S. Eggins,et al.  Subduction zone magmatism , 1995 .

[147]  C. Beaumont,et al.  Tilting of continental interiors by the dynamical effects of subduction: Tectonics , 1989 .

[148]  D. Morata,et al.  Petrogenesis of the Eocene and Mio–Pliocene alkaline basaltic magmatism in Meseta Chile Chico, southern Patagonia, Chile: Evidence for the participation of two slab windows , 2005 .

[149]  W. Spakman,et al.  Tectono-magmatic response to major convergence changes in the North Patagonian suprasubduction system; the Paleogene subduction-transcurrent plate margin transition , 2011 .

[150]  S. N. Césari,et al.  High-precision U–Pb zircon age from the Anfiteatro de Ticó Formation: Implications for the timing of the early angiosperm diversification in Patagonia , 2013 .

[151]  Quan Zhou,et al.  Simulation of late Cenozoic South American flat-slab subduction using geodynamic models with data assimilation , 2016 .

[152]  M. D. Freitas,et al.  An Albian–Cenomanian unconformity in the northern Andes: Evidence and tectonic significance , 2006 .

[153]  B. Hager,et al.  Kinematic models of large‐scale flow in the Earth's mantle , 1979 .

[154]  M. Pérez‐Gussinyé,et al.  Spatial variations of the effective elastic thickness, Te, using multitaper spectral estimation and wavelet methods: Examples from synthetic data and application to South America , 2009 .

[155]  V. Ramos,et al.  Evolution of Eocene to Oligocene arc-related volcanism in the North Patagonian Andes (39–41°S), prior to the break-up of the Farallon plate , 2017 .

[156]  V. Ramos,et al.  U/Pb ages on detrital zircons in the southern central Andes Neogene foreland (36°-37°S): Constraints on Andean exhumation , 2011 .

[157]  A. B. WATTS,et al.  Isostasy and Flexure of the Lithosphere , 2001 .

[158]  C. Doglioni Geological remarks on the relationships between extension and convergent geodynamic settings , 1995 .

[159]  M. Suárez,et al.  Jurassic to Miocene K–Ar dates from eastern central Patagonian Cordillera plutons, Chile (45°–48° S) , 2001, Geological Magazine.

[160]  B. Horton Tectonic Regimes of the Central and Southern Andes: Responses to Variations in Plate Coupling During Subduction , 2018 .

[161]  L. Spalletti,et al.  Evolución magmática y geotectónica de la Serie Andesítica andina [Paleoceno-Eoceno] en la Cordillera Norpatagónica , 1983 .

[162]  D. Figueroa,et al.  Inversion of the Mesozoic Neuquén Rift in the Malargüe Fold and Thrust Belt, Mendoza, Argentina , 1995 .

[163]  B. Haq,et al.  Chronology of Fluctuating Sea Levels Since the Triassic , 1987, Science.

[164]  M. Pimentel,et al.  Early uplift and orogenic deformation in the Neuquén Basin: Constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons , 2010 .

[165]  W. Kiessling,et al.  Integrated bio- and lithofacies analysis of coarse-grained, tide-dominated deltaic environments across the Cretaceous/Paleogene boundary in Patagonia, Argentina , 2012 .

[166]  K. Miller,et al.  The Phanerozoic Record of Global Sea-Level Change , 2005, Science.