A geodynamic model linking Cretaceous orogeny, arc migration, foreland dynamic subsidence and marine ingression in southern South America
暂无分享,去创建一个
Andrés Folguera | F. Dávila | J. Tobal | L. Fennell | A. Folguera | G. Gianni | A. Echaurren | Guido M. Gianni | Federico M. Dávila | Andrés Echaurren | Lucas Fennell | Jonathan Tobal | Cesar Navarrete | Paulo Quezada | Mario Giménez | C. Navarrete | P. Quezada | M. Gimenez
[1] S. N. Césari,et al. High-precision late Aptian Pb/U age for the Punta del Barco Formation (Baqueró Group), Santa Cruz Province, Argentina , 2011 .
[2] J. Homovc,et al. Hydrocarbon exploration potential within intraplate shear-related depocenters: Deseado and San Julian basins, southern Argentina , 2001 .
[3] G. L. Farmer,et al. Hydrodynamic mechanism for the Laramide orogeny , 2011 .
[4] P. Leal,et al. Control tectónico de las secuencias volcaniclásticas neocomianas y paleogeografía en la zona del Lago La Plata (45°S). Sector interno de la faja plegada y corrida de los lagos La Plata y Fontana , 2004 .
[5] T. Wilson. Transition from back-arc to foreland basin development in the southernmost Andes: Stratigraphic record from the Ultima Esperanza District, Chile , 1991 .
[6] W. Snyder,et al. Plate tectonics of the Laramide orogeny , 1978 .
[7] Y. Lagabrielle,et al. Very shallow melting of oceanic crust during spreading ridge subduction: Origin of near‐trench Quaternary volcanism at the Chile Triple Junction , 2003 .
[8] S. Kay,et al. The Somuncura Large Igneous Province in Patagonia: Interaction of a Transient Mantle Thermal Anomaly with a Subducting Slab , 2007 .
[9] A. Folguera,et al. Tectonic evolution of the North Patagonian Andes (41°–44° S) through recognition of syntectonic strata , 2016 .
[10] S. Martínez,et al. Paleobiogeography of the Danian molluscan assemblages of Patagonia (Argentina) , 2015 .
[11] P. Groeber. OBSERVACIONES GEOLÓGICAS A LO LARGO DEL MERIDIANO 70. 2. HOJAS SOSNEAO Y MAIPO , 2019 .
[12] A. Demant,et al. Cretaceous slab segmentation in southwestern Gondwana , 2009, Geological Magazine.
[13] T. Grove,et al. The Role of H 2 O in Subduction Zone Magmatism , 2012 .
[14] S. Weaver,et al. Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysen, southern Chile , 1999, Journal of the Geological Society.
[15] F. Dávila,et al. Tectonic and dynamic controls on the topography and subsidence of the Argentine Pampas: The role of the flat slab , 2010 .
[16] T. Zapata,et al. Structural evolution and magmatic characteristics of the Agrio fold-and-thrust belt , 2006 .
[17] L. Giambiagi,et al. Temporal and spatial relationships of thick- and thin-skinned deformation: A case study from the Malargüe fold-and-thrust belt, southern Central Andes , 2008 .
[18] C. E. Weaver. The Roca Formation in Argentina , 1927 .
[19] C. Currie,et al. Farallon plate dynamics prior to the Laramide orogeny: Numerical models of flat subduction , 2016 .
[20] B. Stöckhert,et al. Postmagmatic cooling and late Cenozoic denudation of the North Patagonian Batholith in the Los Lagos region of Chile, 41°−42°15′S , 2006 .
[21] A. Lahsen,et al. Ages and geochemistry of Mesozoic-Eocene back-arc volcanic rocks in the Aysén region of the Patagonian Andes, Chile , 2001 .
[22] V. Ramos,et al. Repeated eastward shifts of arc magmatism in the Southern Andes: A revision to the long-term pattern of Andean uplift and magmatism , 2011 .
[23] M. Spagnuolo,et al. Late Cretaceous arc rocks in the Andean retroarc region at 36.5°S: Evidence supporting a Late Cretaceous slab shallowing , 2012 .
[24] A. Di Giulio,et al. Cretaceous evolution of the Andean margin between 36°S and 40°S latitude through a multi‐proxy provenance analysis of Neuquén Basin strata (Argentina) , 2017 .
[25] Xian‐Hua Li,et al. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model , 2007 .
[26] M. Franchini,et al. Magmatic characteristics of the Paleocene Cerro Nevazón region and other Late Cretaceous to Early Tertiary calc-alkaline subvolcanic to plutonic units in the Neuquén Andes, Argentina , 2003 .
[27] K. Biddle,et al. Mesozoic Extension and the Formation of Argentine Sedimentary Basins: Chapter 39: Analogs , 1989 .
[28] M. C. Pomposiello,et al. Three-dimensional electrical conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean backarc of Argentina near 36.5°S: evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening , 2014 .
[29] A. Folguera,et al. Synorogenic foreland rifts and transtensional basins: A review of Andean imprints on the evolution of the San Jorge Gulf, Salta Group and Taubaté Basins , 2015 .
[30] C. Braitenberg,et al. New evidence about the subduction of the Copiapó ridge beneath South America, and its connection with the Chilean-Pampean flat slab, tracked by satellite GOCE and EGM2008 models , 2015 .
[31] Tunik,et al. Procedencia de areniscas del Grupo Chubut en el área central de la Sierra de San Bernardo. Análisis preliminar , 2004 .
[32] H. Tavera,et al. The role of ridges in the formation and longevity of flat slabs , 2015, Nature.
[33] M. Haschke,et al. Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21°–26°S) , 2002 .
[34] V. Ramos,et al. Malargüe Group (Maastrichtian–Danian) deposits in the Neuquén Andes, Argentina: Implications for the onset of the first Atlantic transgression related to Western Gondwana break-up , 2011 .
[35] C. Stern,et al. The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate , 2000 .
[36] Paul C. Painter,et al. Estructura , 2019, Fundamentos de Ciencia de Polimeros.
[37] Shijie Zhong,et al. Controls on trench topography from dynamic models of subducted slabs , 1994 .
[38] V. Ramos,et al. Exhumation of the Neuquén Basin in the southern Central Andes (Malargüe fold and thrust belt) from field data and low-temperature thermochronology , 2015 .
[39] R. Pankhurst,et al. Pacific subduction coeval with the Karoo mantle plume: the Early Jurasssic Subcordilleran belt of northwestern Patagonia , 2005, Geological Society, London, Special Publications.
[40] P. Cobbold,et al. Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina , 2003 .
[41] V. Oliveros,et al. Late Oligocene–early Miocene submarine volcanism and deep-marine sedimentation in an extensional basin of southern Chile: Implications for the tectonic development of the North Patagonian Andes , 2016 .
[42] B. Carrapa,et al. Basin evolution of Upper Cretaceous–Lower Cenozoic strata in the Malargüe fold‐and‐thrust belt: northern Neuquén Basin, Argentina , 2016 .
[43] Víctor A. Ramos. Descripción Geológica de la Hoja 33c, Los Chihuidos Norte , 1981 .
[44] E. Engdahl,et al. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin , 2000 .
[45] B. Bookhagen,et al. Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes , 2014 .
[46] J. Tobal,et al. Patagonian broken foreland and related synorogenic rifting: The origin of the Chubut Group Basin , 2015 .
[47] R. Charrier,et al. Tectonostratigraphic evolution of the Andean Orogen in Chile , 2007 .
[48] D. Scrocca,et al. Subduction kinematics and dynamic constraints , 2007 .
[49] D. García-Castellanos,et al. Modeling the evolution of the Guadalquivir foreland basin (southern Spain) , 2002 .
[50] C. Conrad,et al. Mountain building and mantle dynamics , 2013 .
[51] Paul Duhart,et al. New time-constraints on provenance, metamorphism and exhumation of the Bahía Mansa Metamorphic Complex on the Main Chiloé Island, south-central Chile , 2008 .
[52] V. Oliveros,et al. Early Andean tectonomagmatic stages in north Patagonia: insights from field and geochemical data , 2017, Journal of the Geological Society.
[53] G. Panza,et al. Polarized Plate Tectonics , 2015 .
[54] J. Tobal,et al. Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41°30′‐43°S) , 2012 .
[55] S. Kay,et al. Southern Patagonian plateau basalts and deformation: Backarc testimony of ridge collisions , 1992 .
[56] L. Giambiagi,et al. Late Cretaceous Uplift in the Malargüe fold-and-thrust belt (35ºS), southern Central Andes of Argentina and Chile , 2013 .
[57] H. Leanza. Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie , 2009 .
[58] O. Oncken,et al. Deformation of the Central Andean Upper Plate System — Facts, Fiction, and Constraints for Plateau Models , 2006 .
[59] P. Heller,et al. Dynamic topography and vertical motion of the U.S. Rocky Mountain region prior to and during the Laramide orogeny , 2016 .
[60] H. Welsink,et al. Tectonic Evolution and Paleogeography of the Neuquén Basin, Argentina , 1995 .
[61] G. Z. Valcarce,et al. Reactivación de estructuras cretácicas durante la deformación miocena, faja plegada del Agrio, Neuquén , 2007 .
[62] Andrés Bilmes,et al. Miocene block uplift and basin formation in the Patagonian foreland: The Gastre Basin, Argentina , 2013 .
[63] V. Manea,et al. Chilean flat slab subduction controlled by overriding plate thickness and trench rollback , 2012 .
[64] Arie P. van den Berg,et al. On the role of subducting oceanic plateaus in the development of shallow flat subduction , 2002 .
[65] P. Olson,et al. Formation of seafloor swells by mantle plumes , 1986 .
[66] P. Kraemer,et al. Evolución de las cuencas sinorogénicas de la Cordillera Principal entre 35°- 36° S, Malargüe , 2005 .
[67] M. Tiepolo,et al. Detrital zircon provenance from the Neuquén Basin (south-central Andes): Cretaceous geodynamic evolution and sedimentary response in a retroarc-foreland basin , 2012 .
[68] L. Fennell,et al. Geochemical and tectonic evolution of Late Cretaceous to early Paleocene magmatism along the Southern Central Andes (35-36°S) , 2018, Journal of South American Earth Sciences.
[69] V. A. Ramos,et al. Mecanismos y fases de construcción orogénicos del frente oriental andino (36°S, Argentina) , 2013 .
[70] A. Folguera,et al. The lagos La Plata and Fontana fold-and-thrust belt: long-lived orogenesis at the edge of western Patagonia , 2004 .
[71] R. Müller,et al. Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup , 2016 .
[72] V. Valencia,et al. Late Eocene volcanism in North Patagonia (42°30′–43°S): Arc resumption after a stage of within-plate magmatism , 2018 .
[73] R. Huene,et al. OBSERVATIONS AT CONVERGENT MARGINS CONCERNING SEDIMENT SUBDUCTION, SUBDUCTION EROSION, AND THE GROWTH , 1991 .
[74] C. Conrad,et al. Tethyan closure, Andean orogeny, and westward drift of the Pacific Basin , 2008 .
[75] V. Ramos,et al. Tectonic evolution of the Andes of Neuquén: constraints derived from the magmatic arc and foreland deformation , 2005, Geological Society, London, Special Publications.
[76] E. Carminati,et al. Slab dip vs. lithosphere age: No direct function , 2005 .
[77] A. Demant,et al. Geochronology and petrochemistry of Late Cretaceous-(?)Paleogene volcanic sequences from the eastern central Patagonian Cordillera (45°-45°40'S) , 2007 .
[78] R. Pankhurst,et al. The South Patagonian batholith: 150 my of granite magmatism on a plate margin , 2007 .
[79] T. Jordan,et al. Extension and basin formation in the southern Andes caused by increased convergence rate: A mid‐Cenozoic trigger for the Andes , 2001 .
[80] B. Horton,et al. Sedimentary record of plate coupling and decoupling during growth of the Andes , 2016 .
[81] W. Collins,et al. Compressional intracontinental orogens: Ancient and modern perspectives , 2014 .
[82] Alberto C. Garrido. Estratigrafía del Grupo Neuquén, Cretácico Superior de la Cuenca Neuquina (Argentina): nueva propuesta de ordenamiento litoestratigráfico , 2010 .
[83] M. Strecker,et al. Late Miocene climate variability and surface elevation in the central Andes , 2010 .
[84] M. Gurnis,et al. Cenozoic subsidence and uplift of continents from time-varying dynamic topography , 1997 .
[85] V. Ramos,et al. Variable structural controls through time in the Southern Central Andes (~36°S) , 2012 .
[86] F. Dávila,et al. Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia , 2014 .
[87] R. Mitchum,et al. Evolution of the San Jorge Basin, Argentina , 1990 .
[88] Horacio N. Canelo,et al. Mantle Influence on Andean and Pre-Andean Topography , 2018 .
[89] C. Cingolani,et al. El basamento cristalino de los Andes norpatagónicos en Argentina: geocronología e interpretación tectónica , 2005 .
[90] T. Grove,et al. Kinematic variables and water transport control the formation and location of arc volcanoes , 2009, Nature.
[91] G. Wörner,et al. Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): Tracing crustal thickening and magma generation through time and space , 2010 .
[92] J. Libarkin,et al. Rapid late Miocene rise of the Bolivian Altiplano: Evidence for removal of mantle lithosphere , 2006 .
[93] F. Nullo,et al. Patagonian continental deposits (Cretaceous‐Tertiary) , 2011 .
[94] M. Suárez,et al. Cenomanian-? early Turonian minimum age of the Chubut Group, Argentina: SHRIMP U-Pb geochronology , 2014 .
[95] J. Mescua,et al. Evolution of the Chos Malal and Agrio fold and thrust belts, Andes of Neuquén: Insights from structural analysis and apatite fission track dating , 2015 .
[96] Lijun Liu,et al. Reconstructing Farallon Plate Subduction Beneath North America Back to the Late Cretaceous , 2008, Science.
[97] P. Molnar,et al. Lengths of intermediate and deep seismic zones and temperatures in downgoing slabs of lithosphere , 1979 .
[98] B. Horton,et al. Paleogene synorogenic sedimentation in the Altiplano plateau and implications for initial mountain building in the central Andes , 2001 .
[99] R. Giacosa,et al. Meso-Cenozoic tectonics of the southern Patagonian foreland: Structural evolution and implications for Au–Ag veins in the eastern Deseado Region (Santa Cruz, Argentina) , 2010 .
[100] P. Cobbold,et al. Salar de Atacama basin: A record of compressional tectonics in the central Andes since the mid‐Cretaceous , 2006 .
[101] V. A. Ramos,et al. Evolución tectónica del Frente Andino en Neuquén , 2009 .
[102] H. Mehl,et al. Mesozoic and Cenozoic palaeo-stress fields of the South Patagonian Massif deduced from structural and remote sensing data , 1996, Geological Society, London, Special Publications.
[103] A. Berg,et al. A thermo-mechanical model of horizontal subduction below an overriding plate , 2000 .
[104] Dunyi Liu,et al. Petrology and SHRIMP U–Pb zircon geochronology of Cordilleran granitoids of the Bariloche area, Argentina , 2011 .
[105] L. Quevedo,et al. The Late Jurassic to present evolution of the Andean margin: Drivers and the geological record , 2013 .
[106] W. Winkler,et al. Recycling of Proterozoic crust in the Andean Amazon foreland of Ecuador: implications for orogenic development of the Northern Andes , 2008 .
[107] R. Pilger,et al. Tectonic controls of late Cretaceous sedimentation, western interior, USA , 1978, Nature.
[108] O. Müntener,et al. High precision U/Pb zircon dating of the Chaltén Plutonic Complex (Cerro Fitz Roy, Patagonia) and its relationship to arc migration in the southernmost Andes , 2012 .
[109] K. Biddle,et al. MESOZOIC-CENOZOIC PALEOGEOGRAPHIC AND GEODYNAMIC EVOLUTION OF SOUTHERN SOUTH AMERICA , 1988 .
[110] E. Humphreys,et al. Post-Laramide removal of the Farallon slab, western United States , 1995 .
[111] O. Oncken,et al. Subduction Erosion — the “Normal” Mode of Fore-Arc Material Transfer along the Chilean Margin? , 2006 .
[112] P. Cobbold,et al. Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, Northern Chile: Implications for the tectonic evolution of the Central Andes , 2005 .
[113] J. Silvestro,et al. La cuenca cenozoica del río Grande y Palauco: edad, evolución y control estructural, faja plegada de Malargüe , 2009 .
[114] S. Mazzoli,et al. (Un)Coupled thrust belt‐foreland deformation in the northern Patagonian Andes: New insights from the Esquel‐Gastre sector (41°30′–43°S) , 2016 .
[115] J. Afonso,et al. Tertiary tectonics of the sub-Andean region of the North Patagonian Andes, southern central Andes of Argentina (41–42°30′S) , 2005 .
[116] C. Vérard,et al. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations , 2015 .
[117] A. Folguera,et al. Tectonic inversion events in the western San Jorge Gulf Basin from seismic, borehole and field data , 2015 .
[118] T. Ehlers,et al. End member models for Andean Plateau uplift , 2008 .
[119] I. Dalziel,et al. Fossil marginal basin in the southern Andes , 1974, Nature.
[120] B. Hager. Subducted slabs and the geoid: Constraints on mantle rheology and flow , 1983 .
[121] J. Cembrano,et al. Magmatism and tectonics in continental Chiloé, Chile (42°–42°30′S) , 1992 .
[122] F. Dávila,et al. Dynamic topography in South America , 2013 .
[123] L. Spalletti,et al. Cuenca de Ñirihuau , 1989 .
[124] B. Horton. Sedimentary record of Andean mountain building , 2017 .
[125] M. C. Frisicale,et al. Cenozoic structural evolution of the Argentinean Andes at 34°40'S: A close relationship between thick and thin-skinned deformation , 2012 .
[126] M. Manga,et al. The role of magmatically driven lithospheric thickening on arc front migration , 2014 .
[127] F. Dávila,et al. Dynamic uplift during slab flattening , 2015 .
[128] F. Mégard. The Andean orogenic period and its major structures in central and northern Peru , 1984, Journal of the Geological Society.
[129] T. Stadler,et al. Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity , 2010, Science.
[130] R. Drake,et al. Geochronology of the Lake Region of south-central Chile (39°-42°S): Preliminary results , 1988 .
[131] S. Manzoni,et al. The emerging field of geogenomics: Constraining geological problems with genetic data , 2014 .
[132] R. Müller,et al. The role of oceanic plateau subduction in the Laramide orogeny , 2010 .
[133] T. Ehlers,et al. Onset of Convective Rainfall During Gradual Late Miocene Rise of the Central Andes , 2010, Science.
[134] J. Likerman,et al. Cenozoic intraplate tectonics in Central Patagonia: Record of main Andean phases in a weak upper plate , 2017 .
[135] P. Lafourcade,et al. Fold belt in the San Jorge Basin, Argentina: an example of tectonic inversion , 1995, Geological Society, London, Special Publications.
[136] Stephen J. Reynolds,et al. Cordilleran Benioff zones , 1977, Nature.
[137] V. Ramos,et al. Cretaceous deformation of the southern Central Andes: synorogenic growth strata in the Neuquén Group (35° 30′–37° S) , 2017 .
[138] V. Ramos,et al. Andean evolution of the Aluminé fold and thrust belt, Northern Patagonian Andes (38°30′–40°30′S) , 2012 .
[139] A. Hallam. The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates , 1989 .
[140] Bradford H. Hager,et al. A simple global model of plate dynamics and mantle convection , 1981 .
[141] S. Kay,et al. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes , 2005 .
[142] M. L. Sánchez,et al. Modelo de depósito de la Formación Cerro Lisandro: lóbulos de desembocadura y deltas de tipo Gilbert. Cretácico superior, región central de cuenca Neuquina, Argentina , 2014 .
[143] A. Fildani,et al. Initiation of the Magallanes foreland basin: Timing of the southernmost Patagonian Andes orogeny revised by detrital zircon provenance analysis , 2003 .
[144] E. Nelson,et al. The Patagonian batholith at 48°S latitude, Chile; Geochemical and isotopic variations , 1990 .
[145] R. Lacassin,et al. Coupled tectonic evolution of Andean orogeny and global climate , 2015 .
[146] S. Eggins,et al. Subduction zone magmatism , 1995 .
[147] C. Beaumont,et al. Tilting of continental interiors by the dynamical effects of subduction: Tectonics , 1989 .
[148] D. Morata,et al. Petrogenesis of the Eocene and Mio–Pliocene alkaline basaltic magmatism in Meseta Chile Chico, southern Patagonia, Chile: Evidence for the participation of two slab windows , 2005 .
[149] W. Spakman,et al. Tectono-magmatic response to major convergence changes in the North Patagonian suprasubduction system; the Paleogene subduction-transcurrent plate margin transition , 2011 .
[150] S. N. Césari,et al. High-precision U–Pb zircon age from the Anfiteatro de Ticó Formation: Implications for the timing of the early angiosperm diversification in Patagonia , 2013 .
[151] Quan Zhou,et al. Simulation of late Cenozoic South American flat-slab subduction using geodynamic models with data assimilation , 2016 .
[152] M. D. Freitas,et al. An Albian–Cenomanian unconformity in the northern Andes: Evidence and tectonic significance , 2006 .
[153] B. Hager,et al. Kinematic models of large‐scale flow in the Earth's mantle , 1979 .
[154] M. Pérez‐Gussinyé,et al. Spatial variations of the effective elastic thickness, Te, using multitaper spectral estimation and wavelet methods: Examples from synthetic data and application to South America , 2009 .
[155] V. Ramos,et al. Evolution of Eocene to Oligocene arc-related volcanism in the North Patagonian Andes (39–41°S), prior to the break-up of the Farallon plate , 2017 .
[156] V. Ramos,et al. U/Pb ages on detrital zircons in the southern central Andes Neogene foreland (36°-37°S): Constraints on Andean exhumation , 2011 .
[157] A. B. WATTS,et al. Isostasy and Flexure of the Lithosphere , 2001 .
[158] C. Doglioni. Geological remarks on the relationships between extension and convergent geodynamic settings , 1995 .
[159] M. Suárez,et al. Jurassic to Miocene K–Ar dates from eastern central Patagonian Cordillera plutons, Chile (45°–48° S) , 2001, Geological Magazine.
[160] B. Horton. Tectonic Regimes of the Central and Southern Andes: Responses to Variations in Plate Coupling During Subduction , 2018 .
[161] L. Spalletti,et al. Evolución magmática y geotectónica de la Serie Andesítica andina [Paleoceno-Eoceno] en la Cordillera Norpatagónica , 1983 .
[162] D. Figueroa,et al. Inversion of the Mesozoic Neuquén Rift in the Malargüe Fold and Thrust Belt, Mendoza, Argentina , 1995 .
[163] B. Haq,et al. Chronology of Fluctuating Sea Levels Since the Triassic , 1987, Science.
[164] M. Pimentel,et al. Early uplift and orogenic deformation in the Neuquén Basin: Constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons , 2010 .
[165] W. Kiessling,et al. Integrated bio- and lithofacies analysis of coarse-grained, tide-dominated deltaic environments across the Cretaceous/Paleogene boundary in Patagonia, Argentina , 2012 .
[166] K. Miller,et al. The Phanerozoic Record of Global Sea-Level Change , 2005, Science.