Relative sparing of primary auditory cortex in Williams Syndrome

Williams Syndrome (WS) is a neurodevelopment disorder associated with a hemizygous deletion on chromosome 7. WS is characterized with mental retardation, severe visual-spatial deficits, relative language preservation, and excellent facial recognition. Distinctive auditory features include musical ability, heightened sound sensitivity, and specific patterns of auditory evoked potentials. These features have led to the hypothesis that the dorsal forebrain is more affected than the ventral. Previously, we reported primary visual area 17 abnormalities in rostral striate cortex, a region contributing to the dorsal visual pathway. Based on the dorsal-ventral hypothesis, and language and auditory findings, we predicted a more normal histometric picture in auditory area 41. We used an optical dissector method to measure neurons in layers II-VI of area 41 in right and left hemispheres of the same 3 WS and 3 control brains used in the area 17 study. There was a hemisphere by diagnosis interaction in cell packing density (CPD) in layer IV and in cell size in layer III between WS and control brains. Post hoc analysis disclosed in control brains, but not WS, a layer IV left > right asymmetry in CPD, and a layer III left < right asymmetry in cell size. WS brains showed more large neurons bilaterally in layer II and in left layer VI. Histometric alterations in area 41 were less widespread than rostral visual cortex. Also, there was less asymmetry in the WS brain. We interpret layers II and VI differences as reflecting increased limbic connectivity in primary auditory cortex of WS.

[1]  C. Miani,et al.  Treatment of hyperacusis in Williams syndrome with bilateral conductive hearing loss , 2001, European Archives of Oto-Rhino-Laryngology.

[2]  J. R. Hughes Cerebral lateralization: biological mechanisms, associations and pathology , 1987 .

[3]  A M Galaburda,et al.  The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey , 1983, The Journal of comparative neurology.

[4]  A. Nigam,et al.  Hyperacusis and Williams syndrome , 1994, The Journal of Laryngology & Otology.

[5]  Gary H. Glover,et al.  Neural Correlates of Auditory Perception in Williams Syndrome: An fMRI Study , 2003, NeuroImage.

[6]  R. Yuste,et al.  Morphological and physiological characterization of layer VI corticofugal neurons of mouse primary visual cortex. , 2003, Journal of neurophysiology.

[7]  U. Bellugi,et al.  Williams syndrome deficits in visual spatial processing linked to GTF2IRD1 and GTF2I on chromosome 7q11.23. , 2003 .

[8]  Ursula Bellugi,et al.  Aversion, awareness, and attraction: investigating claims of hyperacusis in the Williams syndrome phenotype. , 2005, Journal of child psychology and psychiatry, and allied disciplines.

[9]  P. Goldman-Rakic,et al.  Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. , 1995, Archives of general psychiatry.

[10]  P. Morosan,et al.  Probabilistic Mapping and Volume Measurement of Human Primary Auditory Cortex , 2001, NeuroImage.

[11]  L. Roux,et al.  Morphological and Physiological Characterization of Layer VI Corticofugal Neurons of Mouse Primary Visual Cortex , 2003 .

[12]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[13]  Stephan Eliez,et al.  IV. Neuroanatomy of Williams Syndrome: A High-Resolution MRI Study , 2000, Journal of Cognitive Neuroscience.

[14]  U. Bellugi,et al.  Musical Abilities in Individuals with Williams Syndrome , 1998 .

[15]  L. P. Pérez Jurado Williams-Beuren Syndrome: A Model of Recurrent Genomic Mutation , 2003, Hormone Research in Paediatrics.

[16]  U Bellugi,et al.  Asymmetrical ability. , 1995, Science.

[17]  J. Atkinson,et al.  Visual and visuospatial development in young children with Williams syndrome , 2001, Developmental medicine and child neurology.

[18]  Rumiko Matsuoka,et al.  VI. Genome Structure and Cognitive Map of Williams Syndrome , 2000, Journal of Cognitive Neuroscience.

[19]  A. Dale,et al.  New images from human visual cortex , 1996, Trends in Neurosciences.

[20]  A. Schleicher,et al.  Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. , 1995, Journal of anatomy.

[21]  David Neil Cooper,et al.  Encyclopedia of the Human Genome , 2003 .

[22]  Rumiko Matsuoka,et al.  Williams syndrome deficits in visual spatial processing linked to GTF2IRD1 and GTF2I on Chromosome 7q11.23 , 2003, Genetics in Medicine.

[23]  K. Rockland,et al.  Cortical connections of the occipital lobe in the rhesus monkey: Interconnections between areas 17, 18, 19 and the superior temporal sulcus , 1981, Brain Research.

[24]  M E Raichle,et al.  What words are telling us about the brain. , 1996, Cold Spring Harbor symposia on quantitative biology.

[25]  Andrew E. Switala,et al.  Neuronal Density and Architecture (Gray Level Index) in the Brains of Autistic Patients , 2002, Journal of child neurology.

[26]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[27]  M. Scherg,et al.  Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians , 2002, Nature Neuroscience.

[28]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[29]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[30]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[31]  O. Braddick,et al.  A specific deficit of dorsal stream function in Williams' syndrome , 1997, Neuroreport.

[32]  P. Rakic,et al.  Three‐dimensional counting: An accurate and direct method to estimate numbers of cells in sectioned material , 1988, The Journal of comparative neurology.

[33]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[34]  Ursula Bellugi,et al.  Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome , 1999, Trends in Neurosciences.

[35]  E. Strauss,et al.  Some correlates of intra- and interhemispheric speech organization after left focal brain injury , 1988, Neuropsychologia.

[36]  Janette Atkinson,et al.  Neurobiological Models of Visuospatial Cognition in Children With Williams Syndrome: Measures of Dorsal-Stream and Frontal Function , 2003, Developmental neuropsychology.

[37]  U. Francke,et al.  A duplicated gene in the breakpoint regions of the 7q11.23 Williams-Beuren syndrome deletion encodes the initiator binding protein TFII-I and BAP-135, a phosphorylation target of BTK. , 1998, Human molecular genetics.

[38]  M. Tarr,et al.  The Fusiform Face Area is Part of a Network that Processes Faces at the Individual Level , 2000, Journal of Cognitive Neuroscience.

[39]  L. P. Pérez Jurado,et al.  Williams-Beuren Syndrome: A Model of Recurrent Genomic Mutation , 2003, Hormone Research in Paediatrics.

[40]  U. Bellugi,et al.  Linking Cognitive Neuroscience and Molecular Genetics : New Perspectives from Williams Syndrome , 2001 .

[41]  U Bellugi,et al.  Cytoarchitectonic anomalies in a genetically based disorder: Williams syndrome. , 1994, Neuroreport.

[42]  Ursula Bellugi,et al.  Williams syndrome: neuronal size and neuronal-packing density in primary visual cortex. , 2002, Archives of neurology.

[43]  A. Galaburda,et al.  Cytoarchitectonic organization of the human auditory cortex , 1980, The Journal of comparative neurology.

[44]  D. Buxhoeveden,et al.  The minicolumn hypothesis in neuroscience. , 2002, Brain : a journal of neurology.

[45]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[46]  Ursula Bellugi,et al.  V. Multi-Level Analysis of Cortical Neuroanatomy in Williams Syndrome , 2000, Journal of Cognitive Neuroscience.

[47]  A. Damasio,et al.  The neural basis of language. , 1984, Annual review of neuroscience.

[48]  M. Raichle,et al.  Linguistic processing. , 1997, International review of neurobiology.

[49]  J. Szentágothai,et al.  Brain Research , 2009, Experimental Neurology.

[50]  J. Beaumont Cerebral Lateralization: Biological Mechanisms, Associations, and Pathology , 1987 .

[51]  K. Uğurbil,et al.  Neural correlates of visual form and visual spatial processing , 1999, Human brain mapping.

[52]  R. Nusse,et al.  A novel human homologue of the Drosophila frizzled wnt receptor gene binds wingless protein and is in the Williams syndrome deletion at 7q11.23. , 1997, Human molecular genetics.

[53]  L. Garey,et al.  Neuronal architecture of the human temporal cortex , 2004, Anatomy and Embryology.

[54]  Alan C. Evans,et al.  Modulation of cerebral blood-flow in the human auditory cortex during speech: role of motor-to-sensory discharges , 1996, NeuroImage.

[55]  Allan L. Reiss,et al.  Williams Syndrome: A Neurogenetic Model of Human Behavior , 2006 .

[56]  I. Biederman,et al.  High level object recognition without an anterior inferior temporal lobe , 1997, Neuropsychologia.