Quantitative magnetization transfer imaging: validation and analysis tool development

An on-resonance balanced steady-state free precession technique for quantitative magnetization transfer (qMT) imaging is examined through an initial validation process against the existing "gold-standard" off-resonance spoiled gradient-echomodel. Numerical simulation and sensitivity analysis of the analytical model are performed and confirm the reliability of the analytical model for the normal range of magnetization transfer (MT) parameters. In vivo comparison betweenbalanced steady-state free precession and spoiled-gradient models show agreement between the two models. This new model is shown to be valid and promises to have advantages over the existing methods for its clinical practicality.A user-friendly software package for qMT simulation as well as data analysis and model fitting was also developed as part of this project. The package will be released in the public domain, with the intention to become a standard tool forqMT researchers and users.%%%%Au travers d'un processus de validation initiale, nous comparons une technique d'imagerie quantitative par transfert d'aimantation (qMT) basee sur une sequence ≪en resonance≫ en precession libre avec etat d'equilibre et gradients equilibres, a la reference communement admise que constitue le modele ≪hors-resonance≫ en echo de gradient avec destruction de l'aimantation transversale residuelle.Nous realisons une simulation numerique et une analyse de sensibilite du modele analytique et confirmons ainsi la fiabilite de ce dernier dans une gamme habituelle de parametres de transfert d'aimantation.La comparaison in-vivo entre le modele en etat d'equilibre a precession libre et le modele avec destruction de l'aimantation transversale residuelle montre une coherence. Ce nouveau modele apparat comme valide et semble prometteur en terme d'utilisation clinique de par sa facilite d'utilisation, compare aux methodes existantes.Dans le cadre de ce projet, nous avons egalement developpe un logiciel de simulation du transfert d'aimantation quantitatif facile d'emploi, ainsi qu'un outil d'analyse des donnees et d'ajustement du modele. Le logiciel est sur le point d'etre propose dans le domaine public et nous esperons qu'il devienne un outil d'analyse standard pour les chercheurs et les utilisateurs du transfert d'aimantation quantitatif.

[1]  P. Lauterbur,et al.  Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance , 1973, Nature.

[2]  Nikola Stikov Improving the accuracy of cross‐relaxation imaging , 2012, Int. J. Imaging Syst. Technol..

[3]  John Nolte,et al.  The Human Brain An Introduction to Its Functional Anatomy , 2013 .

[4]  Dwight G Nishimura,et al.  A robust methodology for in vivo T1 mapping , 2010, Magnetic resonance in medicine.

[5]  G. B. Pike,et al.  Quantitative magnetization transfer and myelin water imaging of the evolution of acute multiple sclerosis lesions , 2010, Magnetic resonance in medicine.

[6]  H. Mcconnell Reaction Rates by Nuclear Magnetic Resonance , 1958 .

[7]  R. Balaban,et al.  Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo , 1989, Magnetic resonance in medicine.

[8]  K. Scheffler,et al.  Quantitative magnetization transfer imaging using balanced SSFP , 2008, Magnetic resonance in medicine.

[9]  G J Barker,et al.  Preliminary magnetic resonance study of the macromolecular proton fraction in white matter: a potential marker of myelin? , 2003, Multiple sclerosis.

[10]  Yu-Chung N. Cheng,et al.  Magnetic Resonance Imaging: Physical Principles and Sequence Design , 1999 .

[11]  E. Samulski,et al.  The measurement of cross-relaxation effects in the proton NMR spin-lattice relaxation of water in biological systems: Hydrated collagen and muscle☆ , 1978 .

[12]  Klaus-Armin Nave,et al.  Myelin Biology and Disorders , 2004 .

[13]  K. Scheffler,et al.  On the origin of apparent low tissue signals in balanced SSFP , 2006, Magnetic resonance in medicine.

[14]  Vadim Kuperman,et al.  Magnetic Resonance Imaging: Physical Principles and Applications , 2000 .

[15]  Klaus Scheffler,et al.  Fast high-resolution brain imaging with balanced SSFP: Interpretation of quantitative magnetization transfer towards simple MTR , 2012, NeuroImage.

[16]  R M Henkelman,et al.  Quantitative interpretation of magnetization transfer , 1993, Magnetic resonance in medicine.

[17]  Ives R Levesque,et al.  Iterative optimization method for design of quantitative magnetization transfer imaging experiments , 2011, Magnetic resonance in medicine.

[18]  R. Henkelman,et al.  Understanding pulsed magnetization transfer , 1997, Journal of magnetic resonance imaging : JMRI.

[19]  C. Morrison,et al.  A Model for Magnetization Transfer in Tissues , 1995, Magnetic resonance in medicine.

[20]  I. Levesque Quantitative magnetic resonance imaging of magnetization transfer and T 2 relaxation in human white matter pathology , 2009 .

[21]  K. Scheffler,et al.  Principles and applications of balanced SSFP techniques , 2003, European Radiology.

[22]  K Scheffler,et al.  Optimized balanced steady‐state free precession magnetization transfer imaging , 2007, Magnetic resonance in medicine.

[23]  Sridar Narayanan,et al.  Reproducibility of quantitative magnetization‐transfer imaging parameters from repeated measurements , 2010, Magnetic resonance in medicine.

[24]  G. B. Pike,et al.  Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI , 2001, Magnetic resonance in medicine.

[25]  Oliver Bieri,et al.  MTR variations in normal adult brain structures using balanced steady-state free precession , 2011, Neuroradiology.

[26]  H. Carr STEADY-STATE FREE PRECESSION IN NUCLEAR MAGNETIC RESONANCE , 1958 .

[27]  John M Pauly,et al.  Cross‐relaxation imaging of human articular cartilage , 2011, Magnetic resonance in medicine.

[28]  P. Lauterbur,et al.  Principles of magnetic resonance imaging : a signal processing perspective , 1999 .

[29]  R. Henkelman,et al.  Magnetization transfer in MRI: a review , 2001, NMR in biomedicine.

[30]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[31]  G. Pike,et al.  Quantitative interpretation of magnetization transfer in spoiled gradient echo MRI sequences. , 2000, Journal of magnetic resonance.

[32]  G. B. Pike,et al.  Pulsed magnetization transfer contrast in gradient echo imaging: A two‐pool analytic description of signal response , 1996, Magnetic resonance in medicine.

[33]  Klaus Scheffler,et al.  Characterization of normal appearing brain structures using high-resolution quantitative magnetization transfer steady-state free precession imaging , 2010, NeuroImage.

[34]  K. Scheffler,et al.  Nonbalanced SSFP‐based quantitative magnetization transfer imaging , 2010, Magnetic resonance in medicine.

[35]  G. B. Pike,et al.  Multiple sclerosis: magnetization transfer MR imaging of white matter before lesion appearance on T2-weighted images. , 2000, Radiology.

[36]  M. Gloor Magnetization transfer imaging using steady-state free precession MR sequences , 2010 .

[37]  R Stollberger,et al.  A comparison of magnetization transfer ratio, magnetization transfer rate, and the native relaxation time of water protons related to relapsing-remitting multiple sclerosis. , 2000, AJNR. American journal of neuroradiology.

[38]  Xizeng Wu Lineshape of magnetization transfer via cross relaxation , 1991 .

[39]  Nikola Stikov,et al.  Practical medical applications of quantitative MR relaxometry , 2012, Journal of magnetic resonance imaging : JMRI.