Inference in Bayesian Networks

A Bayesian network is a compact, expressive representation of uncertain relationships among parameters in a domain. In this article, I introduce basic methods for computing with Bayesian networks, starting with the simple idea of summing the probabilities of events of interest. The article introduces major current methods for exact computation, briefly surveys approximation methods, and closes with a brief discussion of open issues.

[1]  Robert M. Fung,et al.  Backward Simulation in Bayesian Networks , 1994, UAI.

[2]  Moisés Goldszmidt,et al.  Fast Belief Update Using Order-of-Magnitude Probabilities , 1995, UAI.

[3]  Uffe Kjærulff Nested Junction Trees , 1997, UAI.

[4]  Max Henrion,et al.  Propagating uncertainty in bayesian networks by probabilistic logic sampling , 1986, UAI.

[5]  Gregory M. Provan,et al.  A Standard Approach for Optimizing Belief Network Inference Using Query DAGs , 1997, UAI.

[6]  John Mark Agosta "Conditional Inter-Causally Independent" Node Distributions, a Property of "Noisy-OR" Models , 1994, UAI.

[7]  David Heckerman,et al.  Advances in Probabilistic Reasoning , 1994, Conference on Uncertainty in Artificial Intelligence.

[8]  Marco Valtorta,et al.  A Hybrid Algorithm to Compute Marginal and Joint Beliefs in Bayesian Networks and Its Complexity , 1998, UAI.

[9]  Ross D. Shachter Probabilistic Inference and Influence Diagrams , 1988, Oper. Res..

[10]  David Heckerman,et al.  A Tractable Inference Algorithm for Diagnosing Multiple Diseases , 2013, UAI.

[11]  Nevin Lianwen Zhang,et al.  Intercausal Independence and Heterogeneous Factorization , 1994, UAI.

[12]  Kuo-Chu Chang,et al.  Node Aggregation for Distributed Inference in Bayesian Networks , 1989, IJCAI.

[13]  Michael Luby,et al.  Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard , 1993, Artif. Intell..

[14]  Max Henrion,et al.  Search-Based Methods to Bound Diagnostic Probabilities in Very Large Belief Nets , 1991, UAI.

[15]  Bruce D'Ambrosio,et al.  Local expression languages for probabilistic dependence , 1995, Int. J. Approx. Reason..

[16]  Uffe Kjærulff,et al.  Reduction of Computational Complexity in Bayesian Networks Through Removal of Weak Dependences , 1994, UAI.

[17]  Prakash P. Shenoy,et al.  A Comparison of Lauritzen-Spiegelhalter, Hugin, and Shenoy-Shafer Architectures for Computing Marginals of Probability Distributions , 1998, UAI.

[18]  Judea Pearl,et al.  Distributed Revision of Composite Beliefs , 1987, Artif. Intell..

[19]  David Poole,et al.  The use of conflicts in searching Bayesian networks , 1993, UAI.

[20]  Michael P. Wellman Fundamental Concepts of Qualitative Probabilistic Networks , 1990, Artif. Intell..

[21]  Ross D. Shachter,et al.  Fusion and Propagation with Multiple Observations in Belief Networks , 1991, Artif. Intell..

[22]  Marek J. Druzdzel,et al.  Some Properties of joint Probability Distributions , 1994, UAI.

[23]  David Poole,et al.  Probabilistic Partial Evaluation: Exploiting Rule Structure in Probabilistic Inference , 1997, IJCAI.

[24]  Michael P. Wellman,et al.  Toward a Market Model for Bayesian Inference , 1996, UAI.

[25]  Gregory F. Cooper,et al.  A Method for Using Belief Networks as Influence Diagrams , 2013, UAI 1988.

[26]  Steffen L. Lauritzen,et al.  Bayesian updating in causal probabilistic networks by local computations , 1990 .

[27]  Rina Dechter,et al.  Mini-Buckets: A General Scheme for Generating Approximations in Automated Reasoning , 1997, IJCAI.

[28]  Michael P. Wellman,et al.  Using Qualitative Relationships for Bounding Probability Distributions , 1998, UAI.

[29]  Kristian G. Olesen,et al.  An algebra of bayesian belief universes for knowledge-based systems , 1990, Networks.

[30]  Kuo-Chu Chang,et al.  Symbolic Probabilistic Inference with Continuous Variables , 1994, UAI.

[31]  Michael P. Wellman,et al.  State-Space Abstraction for Anytime Evaluation of Probabilistic Networks , 1994, UAI.

[32]  Xavier Boyen,et al.  Tractable Inference for Complex Stochastic Processes , 1998, UAI.

[33]  Max Henrion,et al.  Efficient Search-Based Inference for noisy-OR Belief Networks: TopEpsilon , 1996, UAI.

[34]  Kristian G. Olesen,et al.  Causal Probabilistic Networks with Both Discrete and Continuous Variables , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[36]  Eric Horvitz,et al.  Bounded Conditioning: Flexible Inference for Decisions under Scarce Resources , 2013, UAI 1989.

[37]  Rina Dechter,et al.  Bucket elimination: A unifying framework for probabilistic inference , 1996, UAI.

[38]  Dan Geiger,et al.  d-Separation: From Theorems to Algorithms , 2013, UAI.

[39]  Anders L. Madsen,et al.  Lazy Propagation in Junction Trees , 1998, UAI.

[40]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[41]  Judea Pearl,et al.  A Computational Model for Causal and Diagnostic Reasoning in Inference Systems , 1983, IJCAI.

[42]  Craig Boutilier,et al.  Context-Specific Independence in Bayesian Networks , 1996, UAI.

[43]  Dan Geiger,et al.  A sufficiently fast algorithm for finding close to optimal junction trees , 1996, UAI.

[44]  S. Lauritzen Propagation of Probabilities, Means, and Variances in Mixed Graphical Association Models , 1992 .

[45]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[46]  Sampath Srinivas,et al.  A Generalization of the Noisy-Or Model , 1993, UAI.

[47]  Frank Jensen,et al.  Optimal junction Trees , 1994, UAI.

[48]  Judea Pearl,et al.  Evidential Reasoning Using Stochastic Simulation of Causal Models , 1987, Artif. Intell..

[49]  Zhaoyu Li,et al.  An efficient approach for finding the MPE in belief networks , 1993, UAI.

[50]  Bruce D'Ambrosio,et al.  Incremental Probabilistic Inference , 1993, UAI.

[51]  Yang Xiang Optimization of Inter-Subnet Belief Updating in Multiply Sectioned Bayesian Networks , 1995, UAI.

[52]  Michael I. Jordan,et al.  Computing upper and lower bounds on likelihoods in intractable networks , 1996, UAI.

[53]  Denise Draper,et al.  Localized Partial Evaluation of Belief Networks , 1994, UAI.

[54]  Zhaoyu Li,et al.  Efficient inference in Bayes networks as a combinatorial optimization problem , 1994, Int. J. Approx. Reason..

[55]  Piero P. Bonissone,et al.  Proceedings of the Fourth Annual Conference on Uncertainty in Artificial Intelligence , 1990, UAI 1990.