A DOUBLED DOUBLE HOT SPOT IN J0816+5003 AND THE LOGARITHMIC SLOPE OF THE LENSING POTENTIAL

We present an analysis of observations of the doubly lensed double hot spot in the giant radio galaxy J0816+5003 from MERLIN, MDM, WIYN, WHT, UKIRT, and the VLA. The images of the two hot spot components span a factor of 2 in radius on one side of the lensing galaxy at impact parameters of less than 500 pc. Hence, we measure the slope of the lensing potential over a large range in radius, made possible by significant improvement in the accuracy of registration of the radio and optical frame and higher resolution imaging data than previously available. We also infer the lens and source redshifts to be 0.332 and ∼1, respectively. Purely on the basis of lens modeling, and independently of stellar velocity dispersion measurements, we find the potential to be very close to isothermal.

[1]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. X. STELLAR, DYNAMICAL, AND TOTAL MASS CORRELATIONS OF MASSIVE EARLY-TYPE GALAXIES , 2010, 1007.2880.

[2]  Wendy L. Freedman,et al.  Measuring and modeling the universe , 2010 .

[3]  A. Bolton,et al.  Two-dimensional kinematics of SLACS lenses - II. Combined lensing and dynamics analysis of early-type galaxies at z = 0.08-0.33 , 2009, 0904.3861.

[4]  A. Bolton,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. VII. ELLIPTICAL GALAXY SCALING LAWS FROM DIRECT OBSERVATIONAL MASS MEASUREMENTS 1 , 2022 .

[5]  L. Koopmans,et al.  Bayesian strong gravitational-lens modelling on adaptive grids: objective detection of mass substructure in Galaxies , 2008, 0805.0201.

[6]  A. Bolton,et al.  Superresolving Distant Galaxies with Gravitational Telescopes: Keck Laser Guide Star Adaptive Optics and Hubble Space Telescope Imaging of the Lens System SDSS J0737+3216 , 2007, 0710.0637.

[7]  A. Bolton,et al.  A More Fundamental Plane , 2007, astro-ph/0701706.

[8]  J. Rhodes,et al.  The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii , 2007, astro-ph/0701589.

[9]  A. Bolton,et al.  The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1 , 2006, astro-ph/0601628.

[10]  S. Warren,et al.  Decomposition of the Visible and Dark Matter in the Einstein Ring 0047–2808 by Semilinear Inversion , 2004, astro-ph/0411452.

[11]  Anthony Lasenby,et al.  New cosmological data and the values of the fundamental parameters , 2005 .

[12]  C. Kochanek,et al.  Investigation of the Possible Third Image and Mass Models of the Gravitational Lens PMN J1632–0033 , 2002, astro-ph/0212423.

[13]  M. Jarvis,et al.  Near-infrared imaging and the K—z relation for radio galaxies in the 7C Redshift Survey , 2002, astro-ph/0209439.

[14]  T. Treu,et al.  The Structure and Dynamics of Luminous and Dark Matter in the Early-Type Lens Galaxy of 0047–281 at z = 0.485 , 2002, astro-ph/0205281.

[15]  T. Treu,et al.  The Internal Structure and Formation of Early-Type Galaxies: The Gravitational Lens System MG 2016+112 at z = 1.004 , 2002, astro-ph/0202342.

[16]  S. Myers,et al.  High-resolution observations and mass modelling of the CLASS gravitational lens B1152+199 , 2001, astro-ph/0110099.

[17]  R. Saunders,et al.  A sample of 6C radio sources designed to find objects at redshift z > 4 - II. Spectrophotometry and emission-line properties , 2001, astro-ph/0106127.

[18]  S. Rawlings,et al.  A sample of 6C radio sources designed to find objects at redshift z>4– III. Imaging and the radio galaxy K–z relation , 2001, astro-ph/0106130.

[19]  D. Rusin,et al.  Constraints on the Inner Mass Profiles of Lensing Galaxies from Missing Odd Images , 2000, astro-ph/0009079.

[20]  R. G. McMahon,et al.  An Efficient Search for Gravitationally Lensed Radio Lobes , 2000, astro-ph/0007458.

[21]  B. McLeod,et al.  Constraints on Galaxy Density Profiles from Strong Gravitational Lensing: The Case of B1933+503 , 2000, astro-ph/0008390.

[22]  C. Keeton,et al.  Analytic Time Delays and H0 Estimates for Gravitational Lenses , 2000, astro-ph/0004069.

[23]  L. Williams,et al.  Pixelated Lenses and H0 from Time-Delay Quasars , 1999, astro-ph/9911231.

[24]  E. Deutsch Empirical Uncertainty Estimators for Astrometry from Digital Databases , 1999, astro-ph/9906177.

[25]  G. Bernstein,et al.  Values of H0 from Models of the Gravitational Lens 0957+561 , 1999, astro-ph/9903274.

[26]  C. Kochanek,et al.  Constraints on H0 from the Central Velocity Dispersions of Lens Galaxies , 1998, astro-ph/9805080.

[27]  Steve Rawlings,et al.  A sample of 6C radio sources designed to find objects at redshift z>4 - I. The radio data , 1997, astro-ph/9707336.

[28]  P. Alexander,et al.  High-resolution observations at 3.6 cm of seventeen FR II radio galaxies with 0.15 , 1997 .

[29]  G. Bernstein,et al.  The Mass Distribution of the Cluster 0957+561 From Gravitational Lensing , 1996, astro-ph/9608117.

[30]  N. Grogin,et al.  A New Model of the Gravitational Lens 0957+561 and a Limit on the Hubble Constant , 1996 .

[31]  C. Kochanek,et al.  Visibility LensClean and the Reliability of Deconvolved Radio Images , 1996 .

[32]  N. Grogin,et al.  A New Model of the Gravitational Lens 0957+561 and a Limit on the Hubble Constant , 1995, astro-ph/9512156.

[33]  C. Kochanek Evidence for Dark Matter in MG 1654+134 , 1995 .

[34]  C. Kochanek,et al.  The Mass Distribution of the Lens Galaxy in MG 1131+0456 , 1995, astro-ph/9501031.

[35]  R. Perley,et al.  A study of FRII radio galaxies with $z \lt 0.15$ – I. High-resolution maps of eight sources at 3.6 cm , 1992 .

[36]  R. Blandford,et al.  The ring cycle: an iterative lens reconstruction technique applied to MG1131 + 0456 , 1989 .

[37]  R. Laing Radio observation of hot spots , 1989 .

[38]  J. Leahy,et al.  The polarization of classical double radio sources , 1986 .

[39]  M. Longair,et al.  Stellar populations in distant radio galaxies , 1984 .

[40]  Michael George Dyer,et al.  Future Work and Conclusions , 1983 .

[41]  W. Press,et al.  Method for detecting a cosmological density of condensed objects , 1973 .