BDB: databank of PDB files with consistent B-factors.

Protein structures available from the PDB contain for each atom the coordinates, the occupancy and the B-factor that indicates the mobility of the atom. The values that should represent B-factors can relate to atomic motions in different ways. We present here a databank in which all B-factors have been converted to the one, homogeneous representation that is most useful for protein engineering applications. The Databank of PDB files with consistent B-factors (BDB) is freely available through http://www.cmbi.umcn.nl/bdb/.

[1]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[2]  S. Parthasarathy,et al.  On the correlation between the main-chain and side-chain atomic displacement parameters (B values) in high-resolution protein structures. , 1999, Acta crystallographica. Section D, Biological crystallography.

[3]  Jay Painter,et al.  Electronic Reprint Biological Crystallography Optimal Description of a Protein Structure in Terms of Multiple Groups Undergoing Tls Motion Biological Crystallography Optimal Description of a Protein Structure in Terms of Multiple Groups Undergoing Tls Motion , 2005 .

[4]  M Vihinen,et al.  Relationship of protein flexibility to thermostability. , 1987, Protein engineering.

[5]  P. Hougaard,et al.  Soluble, prolonged-acting insulin derivatives. I. Degree of protraction and crystallizability of insulins substituted in the termini of the B-chain. , 1987, Protein engineering.

[6]  Paul D Adams,et al.  Modelling dynamics in protein crystal structures by ensemble refinement , 2012, eLife.

[7]  P Argos,et al.  Accessibility to internal cavities and ligand binding sites monitored by protein crystallographic thermal factors , 1998, Proteins.

[8]  Jack D. Dunitz,et al.  Atomic Dispacement Parameter Nomenclature. Report of a Subcommittee on Atomic Displacement Parameter Nomenclature , 1996 .

[9]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[10]  Andrea Thorn,et al.  Enhanced rigid-bond restraints , 2012, Acta Crystallographica Section A: Foundations of Crystallography.

[11]  K. N. Trueblood,et al.  On the rigid-body motion of molecules in crystals , 1968 .

[12]  T. Aizawa,et al.  Construction of an expression system of insect lysozyme lacking thermal stability: the effect of selection of signal sequence on level of expression in the Pichia pastoris expression system. , 2001, Protein engineering.

[13]  F. Naider,et al.  Functional fusions of T4 lysozyme in the third intracellular loop of a G protein-coupled receptor identified by a random screening approach in yeast. , 2013, Protein engineering, design & selection : PEDS.

[14]  D. Tronrud,et al.  Knowledge-Based B-Factor Restraints for the Refinement of Proteins , 1996 .

[15]  Rafael Brüschweiler,et al.  All-atom contact model for understanding protein dynamics from crystallographic B-factors. , 2009, Biophysical journal.

[16]  John F Hunt,et al.  Dynamics of ATP-binding cassette contribute to allosteric control, nucleotide binding and energy transduction in ABC transporters. , 2004, Journal of molecular biology.

[17]  Pamela F. Jones,et al.  Improving the prediction of protein binding sites by combining heterogeneous data and Voronoi diagrams , 2011, BMC Bioinformatics.

[18]  P. Radivojac,et al.  Protein flexibility and intrinsic disorder , 2004, Protein science : a publication of the Protein Society.

[19]  P. Radivojac,et al.  Improved amino acid flexibility parameters , 2003, Protein science : a publication of the Protein Society.

[20]  Guangyu Yang,et al.  Enhanced Enzyme Kinetic Stability by Increasing Rigidity within the Active Site* , 2014, The Journal of Biological Chemistry.

[21]  G. Clore,et al.  Concordance of residual dipolar couplings, backbone order parameters and crystallographic B-factors for a small alpha/beta protein: a unified picture of high probability, fast atomic motions in proteins. , 2006, Journal of molecular biology.

[22]  C. Dobson,et al.  A non-natural variant of human lysozyme (I59T) mimics the in vitro behaviour of the I56T variant that is responsible for a form of familial amyloidosis. , 2010, Protein engineering, design & selection : PEDS.

[23]  L. Beamer,et al.  The Reaction of Phosphohexomutase from Pseudomonas aeruginosa , 2006, Journal of Biological Chemistry.

[24]  Modesto Orozco,et al.  FlexServ: an integrated tool for the analysis of protein flexibility , 2009, Bioinform..

[25]  Jinyan Li,et al.  Binding Affinity Prediction for Protein-Ligand Complexes Based on β Contacts and B Factor , 2013, J. Chem. Inf. Model..

[26]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[27]  P Argos,et al.  Correlation between side chain mobility and conformation in protein structures. , 1997, Protein engineering.

[28]  Zheng Yuan,et al.  Flexibility analysis of enzyme active sites by crystallographic temperature factors. , 2003, Protein engineering.

[29]  Oliviero Carugo,et al.  Protein—protein crystal‐packing contacts , 1997, Protein science : a publication of the Protein Society.

[30]  Alan A. Dombkowski,et al.  Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins , 2013, BMC Bioinformatics.

[31]  C. Chennubhotla,et al.  Insights into equilibrium dynamics of proteins from comparison of NMR and X-ray data with computational predictions. , 2007, Structure.

[32]  S. Parthasarathy,et al.  Analysis of temperature factor distribution in high‐resolution protein structures , 1997, Protein science : a publication of the Protein Society.

[33]  T. Gibson,et al.  Protein disorder prediction: implications for structural proteomics. , 2003, Structure.

[34]  P. Bourne,et al.  Exploiting sequence and structure homologs to identify protein–protein binding sites , 2005, Proteins.

[35]  B. Rost,et al.  Protein flexibility and rigidity predicted from sequence , 2005, Proteins.

[36]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[37]  D. S. Moss,et al.  TLSANL: TLS parameter-analysis program for segmented anisotropic refinement of macromolecular structures , 1993 .

[38]  U. Schwaneberg,et al.  MAP(2.0)3D: a sequence/structure based server for protein engineering. , 2012, ACS synthetic biology.

[39]  Zheng Yuan,et al.  Prediction of protein B‐factor profiles , 2005, Proteins.

[40]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[41]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[42]  T. Ueda,et al.  Stabilization of lysozyme by the introduction of Gly-Pro sequence. , 1993, Protein engineering.

[43]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[44]  Ethan A. Merritt,et al.  To B or not to B: a question of resolution? , 2012, Acta crystallographica. Section D, Biological crystallography.

[45]  Joachim Selbig,et al.  Detection and characterization of 3D-signature phosphorylation site motifs and their contribution towards improved phosphorylation site prediction in proteins , 2009, BMC Bioinformatics.

[46]  I. Bahar,et al.  Structure‐based analysis of protein dynamics: Comparison of theoretical results for hen lysozyme with X‐ray diffraction and NMR relaxation data , 1999, Proteins.

[47]  Jean-Christophe Gelly,et al.  Local dynamics of proteins and DNA evaluated from crystallographic B factors , 2014, Acta crystallographica. Section D, Biological crystallography.

[48]  D. Brems,et al.  Improved insulin stability through amino acid substitution. , 1992, Protein engineering.

[49]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[50]  BMC Bioinformatics , 2005 .

[51]  D. S. Moss,et al.  RESTRAIN: restrained structure-factor least-squares refinement program for macromolecular structures , 1989 .

[52]  Andreas Vogel,et al.  Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. , 2006, Angewandte Chemie.

[53]  Lukasz Kurgan,et al.  On the relation between residue flexibility and local solvent accessibility in proteins , 2009, Proteins.

[54]  R. Raz,et al.  ProMate: a structure based prediction program to identify the location of protein-protein binding sites. , 2004, Journal of molecular biology.

[55]  Pierrick Craveur,et al.  PredyFlexy: flexibility and local structure prediction from sequence , 2012, Nucleic Acids Res..

[56]  E A Merritt,et al.  Expanding the model: anisotropic displacement parameters in protein structure refinement. , 1999, Acta crystallographica. Section D, Biological crystallography.

[57]  S. Parthasarathy,et al.  Protein thermal stability: insights from atomic displacement parameters (B values). , 2000, Protein engineering.

[58]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[59]  Wayne A. Hendrickson,et al.  A restrained-parameter thermal-factor refinement procedure , 1980 .

[60]  J M Thornton,et al.  Assessment of conformational parameters as predictors of limited proteolytic sites in native protein structures. , 1998, Protein engineering.

[61]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[62]  Hong-Bin Shen,et al.  Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection. , 2009, Protein and peptide letters.

[63]  Avner Schlessinger,et al.  PROFbval: predict flexible and rigid residues in proteins , 2006, Bioinform..

[64]  W. Hendrickson,et al.  Description of Overall Anisotropy in Diffraction from Macromolecular Crystals , 1987 .

[65]  P. Karplus,et al.  Prediction of chain flexibility in proteins , 1985, Naturwissenschaften.

[66]  Ravi Iyengar,et al.  Modulation of Rap Activity by Direct Interaction of Gαo with Rap1 GTPase-activating Protein* , 1999, The Journal of Biological Chemistry.

[67]  K. Saalwächter,et al.  The relation of the X-ray B-factor to protein dynamics: insights from recent dynamic solid-state NMR data , 2012, Journal of biomolecular structure & dynamics.

[68]  T. So,et al.  Remarkable thermal stability of doubly intramolecularly cross-linked hen lysozyme. , 2000, Protein engineering.

[69]  G. Bricogne,et al.  Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. , 2004, Acta crystallographica. Section D, Biological crystallography.