A P ] 2 6 M ay 2 00 0 SINGULAR BOHR-SOMMERFELD RULES FOR 2 D INTEGRABLE SYSTEMS

In this paper, we describe Bohr-Sommerfeld rules for semi-classical completely integrable systems with 2 degrees of freedom with non degenerate singularities (Morse-Bott singularities) under the assumption that the energy level of the first Hamiltonian is non singular. The more singular case of focus-focus singularities is studied in [27] and [26]. The case of 1 degree of freedom has been studied in [10]. Our theory is applied to some famous examples: the geodesics of the ellipsoid, the 1 : 2-resonance, and Schrödinger operators on the sphere S. A numerical test shows that the semi-classical Bohr-Sommerfeld rules match very accurately the “purely quantum” computations.

[1]  N. T. Zung,et al.  Symplectic topology of integrable Hamiltonian systems, I: Arnold-Liouville with singularities , 2001, math/0106013.

[2]  Y. Colin de Verdière,et al.  Singular Bohr–Sommerfeld Rules , 1999 .

[3]  Vu Ngoc San Formes normales semi-classiques des systemes completement integrables au voisinage d'un point critique de l'application moment , 1998, math/9803027.

[4]  N. Zung Singularities of integrable geodesic flows on multidimensional torus and sphere , 1996 .

[5]  V. Guillemin Band asymptotics in two dimensions , 1981 .

[6]  Y. C. Verdière Spectre conjoint d'opérateurs pseudo-différentiels qui commutent , 1980 .

[7]  Y. C. Verdière Sur le spectre des opérateurs elliptiques a bicaractéristiques toutes periodiques , 1979 .

[8]  V. Guillemin Some spectral results on rank one symmetric spaces , 1978 .

[9]  V. Guillemin Some spectral results for the Laplace operator with potential on the n-sphere , 1978 .

[10]  Alan Weinstein,et al.  Lectures on Symplectic Manifolds , 1977 .

[11]  A. Weinstein Asymptotics of eigenvalue clusters for the Laplacian plus a potential , 1977 .

[12]  D. Schaeffer,et al.  On a certain class of Fuchsian partial differential equations , 1977 .

[13]  Johannes J. Duistermaat,et al.  Oscillatory integrals, lagrange immersions and unfolding of singularities , 1974 .

[14]  E. Condon The Theory of Groups and Quantum Mechanics , 1932 .

[15]  San Vũ Ngọc,et al.  Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités , 1998 .

[16]  V. Ngo Bohr-Sommerfeld conditions for Integrable Systems with critical manifolds of focus-focus type , 1998 .

[17]  A. Weinstein,et al.  Lectures on the geometry of quantization , 1995 .

[18]  Y. C. Verdière,et al.  Équilibre instable en régime semi-classique. II. Conditions de Bohr-Sommerfeld , 1994 .

[19]  Y. C. Verdière,et al.  Équilibre instable en régime semi-classique , 1994 .

[20]  Y. C. Verdière,et al.  Équilibre instable en régime semi-classique: i—concentration microlocale , 1994 .

[21]  A. Fomenko Topological classification of integrable systems , 1991 .

[22]  J. Moser,et al.  Geometry of Quadrics and Spectral Theory , 1980 .