Multi-objective reliability-based optimization of prestressed concrete beams

Abstract A general approach to the multiobjective reliability-based optimum (MORBO) designs of prestressed concrete beams (PCB) is presented in this paper. The proposed approach incorporates all behavior and side constraints specified by the American Concrete Institute (ACI) code for prestressed concrete. Loading, material properties, prestressing force and the models used to predict structural performance at various stages—initial, final and ultimate—are all treated as random variables. A general MORBO methodology is solved by integrating PCB design and reliability analysis computer programs with an automated design optimization package. Only bi- and tri- multiobjective (MO) formulations, subjected to eleven reliability constraints and four geometrical constraints, are considered. The competing objectives in the multiobjective optimization of PCB are selected from, minimization of the overall cost of the PCB, maximization of the system reliability index, maximization of the flexural strength reliability index, and maximization of the tensile stress reliability index at service stage. The design variables consist of six geometrical dimensions that shape the PCB cross section and one that represents the amount of prestressing steel. Numerical examples illustrate the application of the proposed approach to the MORBO of PCB are presented. The e-constraint (trade-off) approach is used for the solution of the MORBO.

[1]  John Dalsgaard Sørensen,et al.  Reliability based code calibration , 2002 .

[2]  Dan M. Frangopol,et al.  Reliability Assessment of Prestressed Concrete Beams , 1994 .

[3]  G. N. Vanderplaats,et al.  ADS: A FORTRAN program for automated design synthesis: Version 1.10 , 1984 .

[4]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[5]  D. Mitchell,et al.  Prestressed concrete structures , 1991 .

[6]  Y. Censor Pareto optimality in multiobjective problems , 1977 .

[7]  M. Z. Cohn,et al.  OPTIMUM LIMIT DESIGN OF CONTINUOUS PRESTRESSED CONCRETE BEAMS , 1993 .

[8]  Bruce R. Ellingwood,et al.  LRFD: implementing structural reliability in professional practice , 2000 .

[9]  J. Koski Multicriterion Optimization in Structural Design , 1981 .

[10]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[11]  E Atrek,et al.  New directions in optimum structural design , 1984 .

[12]  Singiresu S Rao,et al.  Generalized hybrid method for fuzzy multiobjective optimization of engineering systems , 1996 .

[13]  Panos Y. Papalambros,et al.  Principles of Optimal Design: Modeling and Computation , 1988 .

[14]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[15]  Sher Ali Mirza,et al.  Flexural Strength Reduction Factor for Bonded PrestressedConcrete Beams , 1980 .

[16]  Hideomi Ohtsubo,et al.  Reliability-Based Structural Optimization , 1991 .

[17]  James L Noland,et al.  Computer-Aided Structural Engineering (CASE) Project: Decision Logic Table Formulation of ACI (American Concrete Institute) 318-77 Building Code Requirements for Reinforced Concrete for Automated Constraint Processing. Volume 1. , 1986 .

[18]  Dan M. Frangopol,et al.  Reliability‐Based Design of Prestressed Concrete Beams , 1994 .

[19]  Andrzej Osyczka,et al.  Multicriteria Design Optimization: Procedures and Applications , 1990 .

[20]  B. Ellingwood,et al.  Methodology for reliability based condition assessment , 1993 .

[21]  M. Z. Cohn,et al.  MULTIOBJECTIVE OPTIMIZATION OF PRESTRESSED CONCRETE STRUCTURES , 1993 .

[22]  Juhani Koski,et al.  Multicriteria Design Optimization , 1990 .

[23]  Edward G. Nawy,et al.  Prestressed Concrete: A Fundamental Approach , 1989 .

[24]  Hojjat Adeli,et al.  Cost Optimization of Concrete Structures , 1999 .

[25]  Hojjat Adeli,et al.  Advances in Design Optimization , 1994 .

[26]  Fred Moses,et al.  BRIDGE DESIGN WITH RESERVE AND RESIDUAL RELIABILITY CONSTRAINTS , 1991 .

[27]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[28]  Dimitris Diamantidis,et al.  The Joint Committee on Structural Safety (JCSS) Probabilistic Model Code for New and Existing Structures , 1999 .

[29]  M. Z. Cohn,et al.  Prestressing Optimization and Its Implications for Design , 1984 .

[30]  Lucien Duckstein Multiobjective Optimization in Structural Design: The Model Choice Problem , 1981 .

[31]  Antoine E. Naaman,et al.  RELIABILITY OF PARTIALLY PRESTRESSED BEAMS AT SERVICEABILITY LIMIT STATES , 1982 .

[32]  Dan M. Frangopol,et al.  Computational Experience with Vector Optimization Techniques for Structural Systems , 1991 .

[33]  J. G. Macgregor,et al.  Statistical Descriptions of Strength of Concrete , 1979 .

[34]  Santiago Hernández,et al.  Practical applications of design optimization , 2002 .

[35]  Bruce Ellingwood,et al.  Development of a probability based load criterion for American National Standard A58 , 1980 .

[36]  Dan M. Frangopol,et al.  Reliability‐Based Vector Optimization of Structural Systems , 1990 .

[37]  Yves Deville,et al.  Simulated Annealing with Estimated Temperature , 2000, AI Commun..

[38]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[39]  M. Z. Colin,et al.  Optimization of Structural Concrete Beams , 1984 .

[40]  O. Ditlevsen Narrow Reliability Bounds for Structural Systems , 1979 .

[41]  Andrzej S. Nowak,et al.  Reliability of Structures , 2000 .

[42]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[43]  Ross B. Corotis,et al.  Reliability-based bridge design and life cycle management with Markov decision processes☆ , 1994 .

[44]  Leonard Spunt,et al.  Optimum structural design , 1971 .

[45]  Rafik Y. Itani,et al.  OPTIMIZATION OF PARTIALLY PRESTRESSED CONCRETE GIRDERS UNDER MULTIPLE STRENGTH AND SERVICEABILITY CRITERIA , 1993 .

[46]  Singiresu S Rao,et al.  Multiobjective fuzzy optimization techniques for engineering design , 1992 .