Variance Reduction in the Simulation of Call Centers

We show via concrete illustrations how the variance can be reduced in the simulation of a telephone call center to estimate the fraction of calls answered within a given time limit. We examine the combination of a control variate and stratification with respect to a continuous input variable, and find that combining them requires care, because the optimal control variate coefficient is a function of the variable on which we stratify. In a setting where we compare two similar configurations of the center, we examine the combination of stratification with common random numbers. We show that proper use of common random numbers reduces the convergence rate of the variance of the difference of performance measures across the two systems

[1]  P. L’Ecuyer,et al.  A Unified View of the IPA, SF, and LR Gradient Estimation Techniques , 1990 .

[2]  Pierre L'Ecuyer,et al.  A Java library for simulating contact centers , 2005, Proceedings of the Winter Simulation Conference, 2005..

[3]  Avishai Mandelbaum,et al.  Telephone Call Centers: Tutorial, Review, and Research Prospects , 2003, Manuf. Serv. Oper. Manag..

[4]  Stephen S. Lavenberg,et al.  A Perspective on the Use of Control Variables to Increase the Efficiency of Monte Carlo Simulations , 1981 .

[5]  Pierre L'Ecuyer,et al.  Modeling Daily Arrivals to a Telephone Call Center , 2003, Manag. Sci..

[6]  Ward Whitt,et al.  Dynamic staffing in a telephone call center aiming to immediately answer all calls , 1999, Oper. Res. Lett..

[7]  Pierre L'Ecuyer,et al.  Simulation in Java with SSJ , 2005, Proceedings of the Winter Simulation Conference, 2005..

[8]  A. Winsor Sampling techniques. , 2000, Nursing times.

[9]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[10]  Paul Glasserman,et al.  Gradient Estimation Via Perturbation Analysis , 1990 .

[11]  P. Glynn,et al.  Some New Perspectives on the Method of Control Variates , 2002 .

[12]  Pierre L'Ecuyer,et al.  Staffing Multiskill Call Centers via Linear Programming and Simulation , 2008, Manag. Sci..

[13]  P. Glasserman,et al.  Some Guidelines and Guarantees for Common Random Numbers , 1992 .

[14]  Paul Bratley,et al.  A guide to simulation (2nd ed.) , 1986 .

[15]  Linus Schrage,et al.  A guide to simulation , 1983 .

[16]  Paul Bratley,et al.  A guide to simulation , 1983 .

[17]  Pierre L'Ecuyer,et al.  On the Convergence Rates of IPA and FDC Derivative Estimators , 1990, Oper. Res..