Microservice-based Edge Device Architecture for Video Analytics

With today's ubiquitous deployment of video cameras and other edge devices, progress in edge computing is happening at an incredible speed. Yet, one aspect of real-time video analytics at the edge that is still underdeveloped is the support for processing multitenant, multi-application scenarios with a limited set of resources. Existing systems either fail to provide the necessary performance, or rely too heavily on edge or cloud servers to handle the workload. This work proposes a new approach, inspired by both Function-as-a-Service and microservices architecture in order to efficiently place and execute video analytics pipelines on edge devices. The main contributions of this work are the ability to dynamically add and run new applications on already deployed systems, and the capability to horizontally distribute pipelines across other neigh-bouring edge devices. We prototype an implementation that we evaluate using multiple concurrent applications per device. Results show that our system provides more flexibility for on-the-fly re-configuration than existing works do, with 20 % improvement in latency and 3.9 X increase in throughput.

[1]  Christos Kozyrakis,et al.  Llama: A Heterogeneous & Serverless Framework for Auto-Tuning Video Analytics Pipelines , 2021, SoCC.

[2]  Haichen Shen,et al.  Distream: scaling live video analytics with workload-adaptive distributed edge intelligence , 2020, SenSys.

[3]  Shalisha Witherspoon,et al.  SEEC: Semantic Vector Federation across Edge Computing Environments , 2020, ArXiv.

[4]  Yufei Wang,et al.  Reducto: On-Camera Filtering for Resource-Efficient Real-Time Video Analytics , 2020, SIGCOMM.

[5]  Aditya M. Deshpande Multi-object trackers in Python , 2020 .

[6]  David Bermbach,et al.  tinyFaaS: A Lightweight FaaS Platform for Edge Environments , 2020, 2020 IEEE International Conference on Fog Computing (ICFC).

[7]  Quoc V. Le,et al.  EfficientDet: Scalable and Efficient Object Detection , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Ada Gavrilovska,et al.  Toward Lighter Containers for the Edge , 2020, HotEdge.

[9]  Shunxing Bao,et al.  Cost-effective Hardware Accelerator Recommendation for Edge Computing , 2020, HotEdge.

[10]  S. H. Mortazavi,et al.  VideoPipe: Building Video Stream Processing Pipelines at the Edge , 2019, Middleware Industry.

[11]  A. Chien,et al.  Real-time Serverless: Enabling Application Performance Guarantees , 2019, WOSC@Middleware.

[12]  Jayson G. Boubin,et al.  Managing edge resources for fully autonomous aerial systems , 2019, SEC.

[13]  P. Pillai,et al.  Towards scalable edge-native applications , 2019, SEC.

[14]  Luciano Baresi,et al.  Towards a Serverless Platform for Edge Computing , 2019, 2019 IEEE International Conference on Fog Computing (ICFC).

[15]  Hyeontaek Lim,et al.  Scaling Video Analytics on Constrained Edge Nodes , 2019, MLSys.

[16]  Andrea Cavallaro,et al.  Omni-Scale Feature Learning for Person Re-Identification , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[17]  Dipankar Raychaudhuri,et al.  Hetero-Edge: Orchestration of Real-time Vision Applications on Heterogeneous Edge Clouds , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.

[18]  Mingjie Sun,et al.  Rethinking the Value of Network Pruning , 2018, ICLR.

[19]  Schahram Dustdar,et al.  Towards a Serverless Platform for Edge AI , 2019, HotEdge.

[20]  Geoffrey M. Voelker,et al.  Sprocket: A Serverless Video Processing Framework , 2018, SoCC.

[21]  Zhuo Chen,et al.  Bandwidth-Efficient Live Video Analytics for Drones Via Edge Computing , 2018, 2018 IEEE/ACM Symposium on Edge Computing (SEC).

[22]  Ion Stoica,et al.  Chameleon: scalable adaptation of video analytics , 2018, SIGCOMM.

[23]  Paramvir Bahl,et al.  VideoEdge: Processing Camera Streams using Hierarchical Clusters , 2018, 2018 IEEE/ACM Symposium on Edge Computing (SEC).

[24]  Peng Liu,et al.  EdgeEye: An Edge Service Framework for Real-time Intelligent Video Analytics , 2018, EdgeSys@MobiSys.

[25]  Zhenming Liu,et al.  DeepDecision: A Mobile Deep Learning Framework for Edge Video Analytics , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.

[26]  Paramvir Bahl,et al.  Real-Time Video Analytics: The Killer App for Edge Computing , 2017, Computer.

[27]  Volker Eiselein,et al.  High-Speed tracking-by-detection without using image information , 2017, 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[28]  Qun Li,et al.  LAVEA: Latency-Aware Video Analytics on Edge Computing Platform , 2017, 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).

[29]  Alex Glikson,et al.  Deviceless edge computing: extending serverless computing to the edge of the network , 2017, SYSTOR.

[30]  Bo Chen,et al.  MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.

[31]  Paramvir Bahl,et al.  Live Video Analytics at Scale with Approximation and Delay-Tolerance , 2017, NSDI.

[32]  Olivier Barais,et al.  Towards microservices architecture to transcode videos in the large at low costs , 2016, 2016 International Conference on Telecommunications and Multimedia (TEMU).

[33]  Alec Wolman,et al.  MCDNN: An Approximation-Based Execution Framework for Deep Stream Processing Under Resource Constraints , 2016, MobiSys.

[34]  Fabio Tozeto Ramos,et al.  Simple online and realtime tracking , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[35]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Aakanksha Chowdhery,et al.  The Design and Implementation of a Wireless Video Surveillance System , 2015, MobiCom.

[37]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[38]  Trigger,et al.  Glimpse: Continuous, Real-Time Object Recognition on Mobile Devices , 2015 .

[39]  Dirk Merkel,et al.  Docker: lightweight Linux containers for consistent development and deployment , 2014 .

[40]  Christopher Stewart,et al.  Performance modeling and system management for multi-component online services , 2005, NSDI.