Ultrafast Relaxation Dynamics of the Antiferrodistortive Phase in Ca Doped SrTiO_{3}.

The ultrafast dynamics of the octahedral rotation in Ca:SrTiO_{3} is studied by time-resolved x-ray diffraction after photoexcitation over the band gap. By monitoring the diffraction intensity of a superlattice reflection that is directly related to the structural order parameter of the soft-mode driven antiferrodistortive phase in Ca:SrTiO_{3}, we observe an ultrafast relaxation on a 0.2 ps timescale of the rotation of the oxygen octahedron, which is found to be independent of the initial temperature despite large changes in the corresponding soft-mode frequency. A further, much smaller reduction on a slower picosecond timescale is attributed to thermal effects. Time-dependent density-functional-theory calculations show that the fast response can be ascribed to an ultrafast displacive modification of the soft-mode potential towards the normal state induced by holes created in the oxygen 2p states.

[1]  M Sikorski,et al.  A time-dependent order parameter for ultrafast photoinduced phase transitions. , 2014, Nature materials.

[2]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[3]  T. N. Hansen,et al.  Atomic-Scale Visualization of Inertial Dynamics , 2005, Science.

[4]  R. Cowley,et al.  Structural phase transitions I. Landau theory , 1980 .

[5]  K. Tada,et al.  Observation of coherent phonons in strontium titanate: Structural phase transition and ultrafast dynamics of the soft modes , 2006 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  S. Moussaoui,et al.  Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet , 2012, Nature Communications.

[8]  Mohamed Chaker,et al.  A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction , 2014, Science.

[9]  K. Kreher Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures , 1997 .

[10]  S. Johnson,et al.  Coherent structural dynamics of a prototypical charge-density-wave-to-metal transition. , 2014, Physical review letters.

[11]  T Schmidt,et al.  Spatiotemporal stability of a femtosecond hard-x-ray undulator source studied by control of coherent optical phonons. , 2007, Physical review letters.

[12]  A T Boothroyd,et al.  Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. , 2011, Physical review letters.

[13]  A. Cavalleri,et al.  Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. , 2001, Physical review letters.

[14]  S. Moussaoui,et al.  Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures , 2015, Nature Communications.

[15]  J. Kiat,et al.  Rietveld analysis of strontium titanate in the Müller state , 1996 .

[16]  J. Hajdu,et al.  Carrier-density-dependent lattice stability in InSb. , 2007, Physical review letters.

[17]  Y. Yamada,et al.  Lattice-Dynamical Study of the 110K Phase Transition in SrTiO3 , 1969 .

[18]  A T Boothroyd,et al.  Photoinduced melting of antiferromagnetic order in La(0.5)Sr(1.5)MnO4 measured using ultrafast resonant soft x-ray diffraction. , 2011, Physical review letters.

[19]  Michael Bauer,et al.  Collapse of long-range charge order tracked by time-resolved photoemission at high momenta , 2011, Nature.

[20]  Roger H. French,et al.  Bulk electronic structure of SrTiO3: Experiment and theory , 2001 .

[21]  T. Ogasawara,et al.  Ultrafast photoinduced melting of orbital order in LaVO3 , 2003 .

[22]  R Huber,et al.  Non-thermal separation of electronic and structural orders in a persisting charge density wave. , 2014, Nature materials.

[23]  S. Tsuneyuki,et al.  First-principles calculations of carrier-doping effects inSrTiO3 , 2003 .

[24]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[25]  M. Cinchetti,et al.  Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. , 2010, Nature materials.

[26]  A. Filippetti,et al.  Polaronic metal state at the LaAlO3/SrTiO3 interface , 2015, Nature Communications.

[27]  K. Müller,et al.  SrTi O 3 : An intrinsic quantum paraelectric below 4 K , 1979 .

[28]  L. Le Guyader,et al.  sub-100 ps all-optical magnetic switching by passive wavefront shaping , 2014, 1407.4010.

[29]  T. Rasing,et al.  Ultrafast optical manipulation of magnetic order , 2010 .

[30]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[31]  J. Hajdu,et al.  Ultrafast Bond Softening in Bismuth: Mapping a Solid's Interatomic Potential with X-rays , 2007, Science.

[32]  R. Ranjan,et al.  A combined X-ray diffraction and Raman scattering study of the phase transitions in Sr1−xCaxTiO3 (x=0.04, 0.06, and 0.12) , 2005 .

[33]  S. Johnson,et al.  Nonthermal melting of a charge density wave in TiSe2. , 2011, Physical review letters.

[34]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[35]  A. Streun,et al.  The Materials Science beamline upgrade at the Swiss Light Source , 2013, Journal of synchrotron radiation.

[36]  E. Samuelsen,et al.  Critical behaviour of SrTiO3 near the 105°K phase transition , 1993 .