A new family of linear maximum rank distance codes
暂无分享,去创建一个
[1] Rod Gow,et al. GALOIS EXTENSIONS AND SUBSPACES OF ALTERNATING BILINEAR FORMS WITH SPECIAL RANK PROPERTIES , 2009 .
[2] P. Dembowski. Finite geometries , 1997 .
[3] Frank R. Kschischang,et al. Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.
[4] Norman L. Johnson,et al. The Collineation Groups of Generalized Twisted Field Planes , 1999 .
[5] Alberto Ravagnani,et al. Rank-metric codes and their MacWilliams identities , 2014, ArXiv.
[6] Thomas Honold,et al. The Expurgation-Augmentation Method for Constructing Good Plane Subspace Codes , 2016, ArXiv.
[7] Sascha Kurz,et al. Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4 , 2014 .
[8] Frank R. Kschischang,et al. Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.
[9] Katherine Morrison,et al. Equivalence for Rank-Metric and Matrix Codes and Automorphism Groups of Gabidulin Codes , 2013, IEEE Transactions on Information Theory.
[10] Ernst M. Gabidulin,et al. The new construction of rank codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[11] O. Ore. On a special class of polynomials , 1933 .
[12] John Sheekey,et al. On embeddings of minimum dimension of PG(n,q)×PG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{PG}}(n,q , 2013, Designs, Codes and Cryptography.
[13] Michel Lavrauw,et al. A geometric construction of finite semifields , 2007 .
[14] Rod Gow,et al. Galois theory and linear algebra , 2009 .
[15] Daniel Augot,et al. Rank metric and Gabidulin codes in characteristic zero , 2013, 2013 IEEE International Symposium on Information Theory.
[16] Ernst M. Gabidulin,et al. Symmetric Rank Codes , 2004, Probl. Inf. Transm..
[17] Rocco Trombetti,et al. Generalized Twisted Gabidulin Codes , 2015, J. Comb. Theory A.
[18] Michel Lavrauw,et al. Scattered Spaces in Galois Geometry , 2015, 1512.05251.
[19] W. Kantor. Finite semifields , 2005 .
[20] Guglielmo Lunardon,et al. Blocking Sets and Derivable Partial Spreads , 2001 .
[21] Alfred Wassermann,et al. Algebraic structures of MRD codes , 2015, Adv. Math. Commun..
[22] Philippe Delsarte,et al. Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.
[23] Giampaolo Menichetti. On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field , 1977 .
[24] Kai-Uwe Schmidt,et al. Symmetric bilinear forms over finite fields with applications to coding theory , 2014, Journal of Algebraic Combinatorics.
[25] Z. Wan,et al. Geometry of Matrices , 1996 .
[26] Thomas Honold,et al. Poster: A new approach to the Main Problem of Subspace Coding , 2014, 9th International Conference on Communications and Networking in China.
[27] José Ranilla,et al. Determination of division algebras with 243 elements , 2010, Finite Fields Their Appl..
[28] A. Adrian Albert,et al. Generalized twisted fields. , 1961 .
[29] Giuseppe Marino,et al. Non-linear maximum rank distance codes , 2016, Des. Codes Cryptogr..
[30] Sascha Kurz,et al. Optimal Binary Subspace Codes of Length 6 , Constant Dimension 3 and Minimum Subspace Distance 4 , 2014 .
[31] John Sheekey,et al. Constant Rank-Distance Sets of Hermitian Matrices and Partial Spreads in Hermitian Polar Spaces , 2014, Electron. J. Comb..
[32] Giuseppe Marino,et al. Translation dual of a semifield , 2008, J. Comb. Theory, Ser. A.
[33] John Sheekey,et al. Subspaces of matrices with special rank properties , 2010 .
[34] Thierry P. Berger,et al. Isometries for rank distance and permutation group of Gabidulin codes , 2003, IEEE Trans. Inf. Theory.
[35] Michel Lavrauw,et al. Scattered Spaces with Respect to a Spread in PG(n,q) , 2000 .