Transverse optical gradient force in untethered rotating metaspinners

We introduce optical metasurfaces as components of ultracompact untethered microscopic metaspinners capable of efficient light-induced rotation in a liquid environment. Illuminated by weakly focused light, a metaspinner generates torque via photon recoil through the metasurfaces' ability to bend light towards high angles despite their sub-wavelength thickness, thereby creating orbital angular momentum. We find that a metaspinner is subject to an anomalous transverse optical gradient force that acts in concert with the classical gradient force. Consequently, when two or more metaspinners are trapped together in a laser beam, they collectively orbit the optical axis in the opposite direction to their spinning motion, in stark contrast to rotors coupled through hydrodynamic or mechanical interactions. The metaspinners delineated herein not only serve to illustrate the vast possibilities of utilizing optical metasurfaces for fundamental exploration of optical torques, but they also represent potential building-blocks of artificial active matter systems, light-driven micromachinery, and general-purpose optomechanical devices.

[1]  P. Johansson,et al.  Synchronization of optically self-assembled nanorotors , 2024, Science advances.

[2]  S. Bergbreiter,et al.  3D‐Printed Electrostatic Microactuators for Flexible Microsystems , 2023, Advanced Functional Materials.

[3]  Jiangfan Yu,et al.  Micro/Nanorobotic Swarms: From Fundamentals to Functionalities. , 2023, ACS nano.

[4]  S. Bergbreiter,et al.  Spider‐Inspired, Fully 3D‐Printed Micro‐Hydraulics for Tiny, Soft Robotics , 2023, Advanced Functional Materials.

[5]  V. G. Truong,et al.  Roadmap for optical tweezers , 2022, Journal of Physics: Photonics.

[6]  B. Hecht,et al.  Light-driven microdrones , 2022, Nature Nanotechnology.

[7]  P. Chaikin,et al.  Hydrodynamic spin-orbit coupling in asynchronous optically driven micro-rotors , 2022, Nature communications.

[8]  Hongbao Xin,et al.  Bio‐Micromotor Tweezers for Noninvasive Bio‐Cargo Delivery and Precise Therapy , 2021, Advanced Functional Materials.

[9]  S. Neale,et al.  Reconfigurable multi-component micromachines driven by optoelectronic tweezers , 2021, Nature Communications.

[10]  F. Capasso,et al.  Metasurface optics for on-demand polarization transformations along the optical path , 2021, Nature Photonics.

[11]  K. Dholakia,et al.  Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles , 2021, Advances in Physics: X.

[12]  G. Volpe,et al.  Microscopic metavehicles powered and steered by embedded optical metasurfaces , 2020, Nature Nanotechnology.

[13]  Yoshito Y. Tanaka,et al.  Plasmonic linear nanomotor using lateral optical forces , 2020, Science Advances.

[14]  Jonathan M. Taylor,et al.  Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation , 2019, Nature Communications.

[15]  Silvio Bianchi,et al.  An optical reaction micro-turbine , 2018, Nature Communications.

[16]  Jesper Glückstad,et al.  Natural convection induced by an optically fabricated and actuated microtool with a thermoplasmonic disk. , 2018, Optics letters.

[17]  Stefano Sacanna,et al.  Targeted assembly and synchronization of self-spinning microgears , 2018, Nature Physics.

[18]  O. Velev,et al.  Supercolloidal Spinners: Complex Active Particles for Electrically Powered and Switchable Rotation , 2018, Advanced Functional Materials.

[19]  Christian Scholz,et al.  Rotating robots move collectively and self-organize , 2018, Nature Communications.

[20]  E. Brasselet,et al.  Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques , 2018, Nature Photonics.

[21]  Sara Nocentini,et al.  Photonic Microhand with Autonomous Action , 2017, Advanced materials.

[22]  Jiachen Zhang,et al.  Reliable Grasping of Three-Dimensional Untethered Mobile Magnetic Microgripper for Autonomous Pick-and-Place , 2017, IEEE Robotics and Automation Letters.

[23]  Jesper Glückstad,et al.  Light-driven micro-tool equipped with a syringe function , 2016, Light: Science & Applications.

[24]  Daniel Andrén,et al.  Gold Nanorod Rotary Motors Driven by Resonant Light Scattering. , 2015, ACS nano.

[25]  Hajime Tanaka,et al.  Purely hydrodynamic ordering of rotating disks at a finite Reynolds number , 2015, Nature Communications.

[26]  Liangfang Zhang,et al.  Artificial Micromotors in the Mouse’s Stomach: A Step toward in Vivo Use of Synthetic Motors , 2014, ACS nano.

[27]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[28]  Halina Rubinsztein-Dunlop,et al.  Driving corrugated donut rotors with Laguerre-Gauss beams. , 2014, Optics express.

[29]  Wei Wang,et al.  Kilohertz rotation of nanorods propelled by ultrasound, traced by microvortex advection of nanoparticles. , 2014, ACS nano.

[30]  Kwanoh Kim,et al.  Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks , 2014, Nature Communications.

[31]  Halina Rubinsztein-Dunlop,et al.  Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle. , 2011, Analytical chemistry.

[32]  Guy Vitrant,et al.  Optically driven Archimedes micro-screws for micropump application. , 2011, Optics express.

[33]  Xiang Zhang,et al.  Light-driven nanoscale plasmonic motors. , 2010, Nature nanotechnology.

[34]  Halina Rubinsztein-Dunlop,et al.  Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. , 2009, Optics express.

[35]  M. Padgett,et al.  Advances in optical angular momentum , 2008 .

[36]  P. Ormos,et al.  Integrated optical motor. , 2006, Applied optics.

[37]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 2003, Nature.

[38]  Halina Rubinsztein-Dunlop,et al.  Optically driven micromachine elements , 2001 .

[39]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[40]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[41]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[42]  Mikael Käll,et al.  Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. , 2010, Nano letters.

[43]  Miles J. Padgett,et al.  IV The Orbital Angular Momentum of Light , 1999 .

[44]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.