Diagrammatics for Soergel Categories

The monoidal category of Soergel bimodules can be thought of as a categorification of the Hecke algebra of a finite Weyl group. We present this category, when the Weyl group is the symmetric group, in the language of planar diagrams with local generators and local defining relations.

[1]  Aaron D. Lauda FROBENIUS ALGEBRAS AND AMBIDEXTROUS ADJUNCTIONS , 2005 .

[2]  Nicolas Libedinsky Sur la catégorie des bimodules de Soergel , 2007, 0707.3603.

[3]  Mikhail Khovanov A functor-valued invariant of tangles , 2002 .

[4]  Mikhail Khovanov,et al.  Matrix factorizations and link homology II , 2008 .

[5]  Aaron D. Lauda,et al.  A diagrammatic approach to categorification of quantum groups II , 2008, 0804.2080.

[6]  M. Khovanov,et al.  Braid cobordisms, triangulated categories, and flag varieties , 2006, math/0609335.

[7]  R. Rouquier,et al.  Derived equivalences for symmetric groups and sl2-categorification , 2004, math/0407205.

[8]  Benjamin Elias A Diagrammatic Temperley-Lieb Categorification , 2010, Int. J. Math. Math. Sci..

[9]  Categorification of the braid groups , 2004, math/0409593.

[10]  C. Stroppel,et al.  Categorification of (induced) cell modules and the rough structure of generalized Verma modules , 2007, math/0702811.

[11]  From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories , 2001, math/0111204.

[12]  Nicolas Libedinsky Presentation of right-angled Soergel categories by generators and relations , 2008, 0810.2395.

[13]  R. Rouquier 2-Kac-Moody algebras , 2008, 0812.5023.

[14]  Four‐dimensional topological quantum field theory, Hopf categories, and the canonical bases , 1994, hep-th/9405183.

[15]  Daniel Krasner,et al.  Rouquier Complexes are Functorial over Braid Cobordisms , 2009, 0906.4761.

[16]  The Karoubi envelope and Lee’s degeneration of Khovanov homology , 2006, math/0606542.

[17]  Masaki Kashiwara,et al.  Kazhdan-Lusztig conjecture and holonomic systems , 1981 .

[18]  Vaughan F. R. Jones,et al.  Hecke algebra representations of braid groups and link polynomials , 1987 .

[19]  M. Mackaay,et al.  THE 1,2-COLOURED HOMFLY-PT LINK HOMOLOGY , 2008, 0809.0193.

[20]  A Categorification of Quantum sl_2 , 2011 .

[21]  王娜,et al.  A Categorification of Quantum sl2 , 2011 .

[22]  Mikhail Khovanov,et al.  Matrix factorizations and link homology , 2008 .

[23]  David Kazhdan,et al.  Schubert varieties and Poincar'e duality , 1980 .

[25]  R. Macpherson,et al.  A geometric setting for the quantum deformation of $GL_n$ , 1990 .

[26]  Jacob Rasmussen,et al.  Some differentials on Khovanov–Rozansky homology , 2006, math/0607544.

[27]  KAZHDAN-LUSZTIG-POLYNOME UND UNZERLEGBARE BIMODULN ÜBER POLYNOMRINGEN , 2006, Journal of the Institute of Mathematics of Jussieu.

[28]  Wolfgang Soergel,et al.  The combinatorics of Harish-Chandra bimodules. , 1992 .

[29]  M. Khovanov,et al.  A categorification of the Temperley-Lieb algebra and Schur quotients of $ U({\frak sl}_2) $ via projective and Zuckerman functors , 1999, math/0002087.

[30]  D. Kazhdan,et al.  Representations of Coxeter groups and Hecke algebras , 1979 .

[31]  Bruce Bartlett,et al.  The Geometry of Unitary 2-Representations of Finite Groups and their 2-Characters , 2008, Appl. Categorical Struct..

[32]  Marko Stosic,et al.  sl.N/-link homology (N 4) using foams and the Kapustin-Li formula , 2007, 0708.2228.

[33]  B. Bartlett On unitary 2-representations of finite groups and topological quantum field theory , 2009, 0901.3975.

[34]  Khovanov-Rozansky homology via a canopolis formalism , 2006, math/0610650.

[35]  Pedro Vaz,et al.  The Diagrammatic Soergel Category and sl(2) and sl(3) Foams , 2009, Int. J. Math. Math. Sci..

[36]  C. Stroppel,et al.  A categorification of finite-dimensional irreducible representations of quantum $${\mathfrak{sl}_2}$$ and their tensor products , 2007 .

[37]  From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors , 2001, math/0111205.

[38]  S. Ariki Kac-Moody Lie algebras , 2002 .

[39]  J. Robin B. Cockett,et al.  Introduction to linear bicategories , 2000, Mathematical Structures in Computer Science.

[40]  Wolfgang Soergel,et al.  Kazhdan-Lusztig polynomials and a combinatoric for tilting modules , 1997 .

[41]  R. Rouquier Categorification of sl 2 and braid groups , 2005 .

[43]  Aaron D. Lauda,et al.  A categorification of quantum sl(n) , 2008, 0807.3250.

[44]  M. Khovanov,et al.  A Categorification of the Temperley-Lieb Algebra and Schur Quotients of U(sl2) via Projective and , 2000 .

[45]  On Khovanov's cobordism theory for SU3 knot homology , 2006, math/0612754.

[46]  Geordie Williamson Singular Soergel bimodules , 2010, 1010.1283.

[47]  C. Stroppel,et al.  A categorification of finite-dimensional irreducible representations of quantum sl(2) and their tensor products , 2005, math/0511467.

[48]  The combinatorics of Coxeter categories , 2005, math/0512176.

[49]  G. Williamson,et al.  A geometric model for Hochschild homology of Soergel bimodules , 2007, 0707.2003.

[50]  Pedro Vaz,et al.  The Diagrammatic Soergel Category and sl(N)-Foams, for N≥4 , 2009, Int. J. Math. Math. Sci..

[51]  A diagrammatic approach to categorification of quantum groups II , 2009 .

[52]  Mikhail Khovanov,et al.  Triply-graded link homology and Hochschild homology of Soergel bimodules , 2005, math/0510265.

[53]  Jacob Rasmussen,et al.  The Superpolynomial for Knot Homologies , 2005, Exp. Math..

[54]  Combinatorics of Harish-Chandra modules , 1998 .