Diagrammatics for Soergel Categories
暂无分享,去创建一个
[1] Aaron D. Lauda. FROBENIUS ALGEBRAS AND AMBIDEXTROUS ADJUNCTIONS , 2005 .
[2] Nicolas Libedinsky. Sur la catégorie des bimodules de Soergel , 2007, 0707.3603.
[3] Mikhail Khovanov. A functor-valued invariant of tangles , 2002 .
[4] Mikhail Khovanov,et al. Matrix factorizations and link homology II , 2008 .
[5] Aaron D. Lauda,et al. A diagrammatic approach to categorification of quantum groups II , 2008, 0804.2080.
[6] M. Khovanov,et al. Braid cobordisms, triangulated categories, and flag varieties , 2006, math/0609335.
[7] R. Rouquier,et al. Derived equivalences for symmetric groups and sl2-categorification , 2004, math/0407205.
[8] Benjamin Elias. A Diagrammatic Temperley-Lieb Categorification , 2010, Int. J. Math. Math. Sci..
[9] Categorification of the braid groups , 2004, math/0409593.
[10] C. Stroppel,et al. Categorification of (induced) cell modules and the rough structure of generalized Verma modules , 2007, math/0702811.
[11] From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories , 2001, math/0111204.
[12] Nicolas Libedinsky. Presentation of right-angled Soergel categories by generators and relations , 2008, 0810.2395.
[13] R. Rouquier. 2-Kac-Moody algebras , 2008, 0812.5023.
[14] Four‐dimensional topological quantum field theory, Hopf categories, and the canonical bases , 1994, hep-th/9405183.
[15] Daniel Krasner,et al. Rouquier Complexes are Functorial over Braid Cobordisms , 2009, 0906.4761.
[16] The Karoubi envelope and Lee’s degeneration of Khovanov homology , 2006, math/0606542.
[17] Masaki Kashiwara,et al. Kazhdan-Lusztig conjecture and holonomic systems , 1981 .
[18] Vaughan F. R. Jones,et al. Hecke algebra representations of braid groups and link polynomials , 1987 .
[19] M. Mackaay,et al. THE 1,2-COLOURED HOMFLY-PT LINK HOMOLOGY , 2008, 0809.0193.
[20] A Categorification of Quantum sl_2 , 2011 .
[21] 王娜,et al. A Categorification of Quantum sl2 , 2011 .
[22] Mikhail Khovanov,et al. Matrix factorizations and link homology , 2008 .
[23] David Kazhdan,et al. Schubert varieties and Poincar'e duality , 1980 .
[25] R. Macpherson,et al. A geometric setting for the quantum deformation of $GL_n$ , 1990 .
[26] Jacob Rasmussen,et al. Some differentials on Khovanov–Rozansky homology , 2006, math/0607544.
[27] KAZHDAN-LUSZTIG-POLYNOME UND UNZERLEGBARE BIMODULN ÜBER POLYNOMRINGEN , 2006, Journal of the Institute of Mathematics of Jussieu.
[28] Wolfgang Soergel,et al. The combinatorics of Harish-Chandra bimodules. , 1992 .
[29] M. Khovanov,et al. A categorification of the Temperley-Lieb algebra and Schur quotients of $ U({\frak sl}_2) $ via projective and Zuckerman functors , 1999, math/0002087.
[30] D. Kazhdan,et al. Representations of Coxeter groups and Hecke algebras , 1979 .
[31] Bruce Bartlett,et al. The Geometry of Unitary 2-Representations of Finite Groups and their 2-Characters , 2008, Appl. Categorical Struct..
[32] Marko Stosic,et al. sl.N/-link homology (N 4) using foams and the Kapustin-Li formula , 2007, 0708.2228.
[33] B. Bartlett. On unitary 2-representations of finite groups and topological quantum field theory , 2009, 0901.3975.
[34] Khovanov-Rozansky homology via a canopolis formalism , 2006, math/0610650.
[35] Pedro Vaz,et al. The Diagrammatic Soergel Category and sl(2) and sl(3) Foams , 2009, Int. J. Math. Math. Sci..
[36] C. Stroppel,et al. A categorification of finite-dimensional irreducible representations of quantum $${\mathfrak{sl}_2}$$ and their tensor products , 2007 .
[37] From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors , 2001, math/0111205.
[38] S. Ariki. Kac-Moody Lie algebras , 2002 .
[39] J. Robin B. Cockett,et al. Introduction to linear bicategories , 2000, Mathematical Structures in Computer Science.
[40] Wolfgang Soergel,et al. Kazhdan-Lusztig polynomials and a combinatoric for tilting modules , 1997 .
[41] R. Rouquier. Categorification of sl 2 and braid groups , 2005 .
[43] Aaron D. Lauda,et al. A categorification of quantum sl(n) , 2008, 0807.3250.
[44] M. Khovanov,et al. A Categorification of the Temperley-Lieb Algebra and Schur Quotients of U(sl2) via Projective and , 2000 .
[45] On Khovanov's cobordism theory for SU3 knot homology , 2006, math/0612754.
[46] Geordie Williamson. Singular Soergel bimodules , 2010, 1010.1283.
[47] C. Stroppel,et al. A categorification of finite-dimensional irreducible representations of quantum sl(2) and their tensor products , 2005, math/0511467.
[48] The combinatorics of Coxeter categories , 2005, math/0512176.
[49] G. Williamson,et al. A geometric model for Hochschild homology of Soergel bimodules , 2007, 0707.2003.
[50] Pedro Vaz,et al. The Diagrammatic Soergel Category and sl(N)-Foams, for N≥4 , 2009, Int. J. Math. Math. Sci..
[51] A diagrammatic approach to categorification of quantum groups II , 2009 .
[52] Mikhail Khovanov,et al. Triply-graded link homology and Hochschild homology of Soergel bimodules , 2005, math/0510265.
[53] Jacob Rasmussen,et al. The Superpolynomial for Knot Homologies , 2005, Exp. Math..
[54] Combinatorics of Harish-Chandra modules , 1998 .