Conceiving Particles as Undulating Granular Systems Allows Fundamentally Realist Interpretation of Quantum Mechanics

The strange behavior of subatomic particles is described by quantum theory, whose standard interpretation rejected some fundamental principles of classical physics such as causality, objectivity, locality, realism and determinism. Recently, a granular relativistic electrodynamical model of the electron could capture the measured values of its observables and predict its mass from the stability of its substructure. The model involves numerous subparticles that constitute some tight nucleus and loosely bound envelope allegedly forming real waves. The present study examines whether such a substructure and associated dynamics allow fundamentally realist interpretations of emblematic quantum phenomena, properties and principles, such as wave-particle duality, loss of objectivity, quantization, simultaneous multipath exploration, collapse of wavepacket, measurement problem, and entanglement. Drawing inspiration from non-linear dynamical systems, subparticles would involve realist hidden variables while high-level observables would not generally be determined, as particles would generally be in unstable states before measurements. Quantum mechanics would constitute a high-level probabilistic description emerging from an underlying causal, objective, local, albeit contextual and unpredictable reality. Altogether, by conceiving particles as granular systems composed of numerous extremely sensitive fluctuating subcorpuscles, this study proposes the possible existence of a local fundamentally realist interpretation of quantum mechanics.

[1]  Electron Mass Predicted From Substructure Stability in Electrodynamical Model , 2020, Frontiers in Physics.

[2]  D. Bourilkov Hint for axial-vector contact interactions in the data on e + e − → e + e − ( γ ) at center-of-mass energies 192–208 GeV , 2001 .

[3]  Louis de Broglie,et al.  Recherches sur la théorie des quanta , 1925 .

[4]  N. Mermin Hidden variables and the two theorems of John Bell , 1993, 1802.10119.

[5]  David Hestenes Quantum mechanics from self-interaction , 1985 .

[6]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[7]  T. Bohr,et al.  Double-slit experiment with single wave-driven particles and its relation to quantum mechanics. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[9]  J. Schwinger The Theory of Quantized Fields. I , 1951 .

[10]  Olga V. Man'ko,et al.  Probability Representation of Quantum States , 2021, Entropy.

[11]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[12]  Albert Einstein,et al.  Physics and reality , 1936 .

[13]  J. Schwinger The Theory of Quantized Fields. VI , 1954 .

[14]  Howard Wiseman,et al.  Quantum physics: Death by experiment for local realism , 2015, Nature.

[15]  L. Pauling The chemical bond : a brief introduction to modern structural chemistry , 1967 .

[16]  Abner Shimony,et al.  Contextual Hidden Variables Theories and Bell's Inequalities , 1984, The British Journal for the Philosophy of Science.

[17]  Marian Kupczynski,et al.  EPR paradox, quantum nonlocality and physical reality , 2016, 1602.02959.

[18]  Andrei Khrennikov,et al.  Violation of Bell’s Inequality and non‐Kolmogorovness , 2009 .

[19]  Roderich Tumulka,et al.  What Is Bohmian Mechanics , 2001, Compendium of Quantum Physics.

[20]  Weber,et al.  Unified dynamics for microscopic and macroscopic systems. , 1986, Physical review. D, Particles and fields.

[21]  W. Duane The Transfer in Quanta of Radiation Momentum to Matter. , 1923, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Karl R. Popper,et al.  Quantum Mechanics without “The Observer” , 1967 .

[23]  W. Sulis Quantum Mechanics Without Observers , 2013, 1302.4156.

[24]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[25]  E. Madelung Quantum Theory in Hydrodynamical Form , 2007 .

[26]  M. Redhead Quantum theory and measurement , 1984 .

[27]  A. Jabs,et al.  A conjecture concerning determinism, reduction, and measurement in quantum mechanics , 2012, 1204.0614.

[28]  Wayne C. Myrvold,et al.  What is a wavefunction? , 2015, Synthese.

[29]  N. David Mermin,et al.  Is the Moon There When Nobody Looks? Reality and the Quantum Theory , 1985 .

[30]  L. Smolin Einstein's Unfinished Revolution: The Search for What Lies Beyond the Quantum , 2019 .

[31]  F. Jin,et al.  Event-Based Corpuscular Model for Quantum Optics Experiments , 2010, 1006.1728.

[32]  Roger Colbeck,et al.  No extension of quantum theory can have improved predictive power , 2010, Nature communications.

[33]  K. Michielsen,et al.  A local realist model for correlations of the singlet state , 2006 .

[34]  C. J. Davisson,et al.  Diffraction of Electrons by a Crystal of Nickel , 1927 .

[35]  E. Fort,et al.  Dynamical phenomena: Walking and orbiting droplets , 2005, Nature.

[36]  P. Grangier,et al.  Delayed-choice test of quantum complementarity with interfering single photons. , 2008, Physical review letters.

[37]  M. Durevic Quantum field theory and local contextual extensions , 1992 .

[38]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[39]  M. Born,et al.  Statistical Interpretation of Quantum Mechanics. , 1955, Science.

[40]  W. Mccrea Physical Reality , 1951, Nature.

[41]  A. Einstein On the Method of Theoretical Physics , 1934, Philosophy of Science.

[42]  Marian Kupczynski,et al.  Can we close the Bohr–Einstein quantum debate? , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  J. M. Bush Pilot-Wave Hydrodynamics , 2015 .

[44]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[45]  E. Schrödinger Über die Kräftefreie bewegung in der relativistischen Quantenmechanik , 1930 .

[46]  E. Witten,et al.  Superstring Theory: Introduction , 2012 .

[47]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[49]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[50]  Stanley Gudder,et al.  On Hidden-Variable Theories , 1970 .

[51]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[52]  T. Nieuwenhuizen,et al.  Is the Contextuality Loophole Fatal for the Derivation of Bell Inequalities? , 2011 .

[53]  M. Born Quantenmechanik der Stoßvorgänge , 1926 .

[54]  W. Heisenberg The Physical Principles of the Quantum Theory , 1930 .

[55]  H. Rauch,et al.  The wave-particle dualism in 1992: A summary , 1992 .

[56]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[57]  M. Buchanan Everything is Particles , 2008 .

[58]  William Sulis,et al.  Locality Is Dead! Long Live Locality! , 2020, Frontiers in Physics.

[59]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .

[60]  Andreas S. Kronfeld,et al.  The lightness of being: mass, ether, and unification of the forces , 2009 .

[61]  Yves Couder,et al.  Single-particle diffraction and interference at a macroscopic scale. , 2006, Physical review letters.

[62]  M. Born Is Classical Mechanics in Fact Deterministic , 1969 .

[63]  An Interpretation of the Formalism of Quantum Mechanics in Terms of Epistemological Realism , 1992, The British Journal for the Philosophy of Science.

[64]  Max Born,et al.  THE INTERPRETATION OF QUANTUM MECHANICS* , 1953, The British Journal for the Philosophy of Science.

[65]  David Hestenes,et al.  The zitterbewegung interpretation of quantum mechanics , 1990 .

[66]  J. Moukhtar,et al.  Path-memory induced quantization of classical orbits , 2010, Proceedings of the National Academy of Sciences.

[67]  Andrei Khrennikov,et al.  Get Rid of Nonlocality from Quantum Physics , 2019, Entropy.

[68]  L. Broglie Une tentative d'interprétation causale et non linéaire de la mécanique ondulatoire : (la théorie de la double solution) , 1957 .

[69]  Keith F. McDonald,et al.  Paradox in Wave-Particle Duality , 2007, quant-ph/0702188.

[70]  V. Allori Quantum Mechanics and Paradigm Shifts , 2015 .

[71]  Alfred Landé,et al.  New Foundations of Quantum Mechanics , 1966 .

[72]  Matthew F Pusey,et al.  On the reality of the quantum state , 2011, Nature Physics.

[73]  N. Bohr The Quantum Postulate and the Recent Development of Atomic Theory , 1928, Nature.

[74]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[75]  K. Jung Polarization Correlation of Entangled Photons Derived Without Using Non-local Interactions , 2020, Frontiers in Physics.

[76]  John W. M. Bush,et al.  Quantum mechanics writ large , 2010, Proceedings of the National Academy of Sciences.

[77]  E. Brändas There Are Quantum Jumps , 2015 .

[78]  Marian Kupczynski Bell Inequalities, Experimental Protocols and Contextuality , 2014 .

[79]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[80]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[81]  Quantum mechanics in terms of realism , 1996, quant-ph/9606017.

[82]  I. Pitowsky Resolution of the Einstein-Podolsky-Rosen and Bell Paradoxes , 1982 .

[83]  Louis de Broglie,et al.  La mécanique ondulatoire et la structure atomique de la matière et du rayonnement , 1927 .

[84]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[85]  D. Amit Modelling Brain Function: The World of Attractor Neural Networks , 1989 .

[86]  R. Robinson,et al.  An Introduction to Dynamical Systems: Continuous and Discrete , 2004 .

[87]  E. Wigner Remarks on the Mind-Body Question , 1995 .

[88]  H. Foerster Quantum mechanics in terms of realism , 2016 .

[89]  J. Bub Why the quantum , 2004, quant-ph/0402149.

[90]  P. Bessey Quantum Physics Of Atoms, Molecules, Solids, Nuclei And Particles , 2014 .

[91]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[92]  Tsuyoshi Matsuda,et al.  Demonstration of single‐electron buildup of an interference pattern , 1989 .

[93]  J. P. Vigier,et al.  Model of the Causal Interpretation of Quantum Theory in Terms of a Fluid with Irregular Fluctuations , 1954 .

[94]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[95]  Nicolas Gisin,et al.  Reply to the "Comment on: Testing the speed of 'spooky action at a distance' " , 2008, 0810.4607.

[96]  J. Vigier,et al.  Single-particle trajectories and interferences in quantum mechanics , 1992 .

[97]  Proposed neutron interferometry test of Einstein's “Einweg” assumption in the Bohr-Einstein controversy , 1990 .

[98]  Gerard 't Hooft,et al.  The Cellular Automaton Interpretation of Quantum Mechanics , 2014, 1405.1548.

[99]  H. Everett "Relative State" Formulation of Quantum Mechanics , 1957 .

[100]  C. Dewdney,et al.  Wave-particle dualism and the interpretation of quantum mechanics , 1992 .

[101]  Simon Kochen,et al.  The Free Will Theorem , 2006 .

[102]  N. Gisin,et al.  General properties of nonsignaling theories , 2005, quant-ph/0508016.

[103]  H. Wiseman,et al.  Bell Nonlocality, Signal Locality and Unpredictability (or What Bohr Could Have Told Einstein at Solvay Had He Known About Bell Experiments) , 2009, 0911.2504.

[104]  Niels Bohr,et al.  Discussion with Einstein on Epistemological Problems in Atomic Physics , 1996 .

[105]  Confronting the complementarity principle in an interference experiment , 1991 .

[106]  Carver A. Mead Collective electrodynamics : quantum foundations of electromagnetism , 2000 .

[107]  A. Aspect Bell's inequality test: more ideal than ever , 1999, Nature.

[108]  G. Hooft Free Will in the Theory of Everything , 2017, Determinism and Free Will.

[109]  J. Bell On the impossible pilot wave , 1982 .