Microstructure, mechanical property and corrosion behavior of interpenetrating (HA+β-TCP)/MgCa composite fabricated by suction casting.

[1]  P. Prangnell,et al.  Microstructure and performance of a biodegradable Mg–1Ca–2Zn–1TCP composite fabricated by combined solidification and deformation processing , 2012 .

[2]  Z. Fan,et al.  Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology , 2012 .

[3]  Baoping Zhang,et al.  Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions , 2011 .

[4]  Li Li,et al.  Microstructure and characteristics of the metal-ceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration. , 2011, Journal of biomedical materials research. Part B, Applied biomaterials.

[5]  J. Son,et al.  Fabrication and thermal expansion behavior of a magnesium-matrix composite with a high content of reinforcing SiC particles , 2011 .

[6]  Youngmee Jung,et al.  New fabrication methods of bioactive and biodegradable scaffolds for bone tissue engineering , 2011 .

[7]  A. Nakahira,et al.  New technique for bonding hydroxyapatite ceramics and magnesium alloy by hydrothermal hot-pressing method , 2011 .

[8]  Zunjie Wei,et al.  Surface microstructure and cell compatibility of calcium silicate and calcium phosphate composite coatings on Mg-Zn-Mn-Ca alloys for biomedical application. , 2011, Colloids and surfaces. B, Biointerfaces.

[9]  Yufeng Zheng,et al.  Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. , 2011, Acta biomaterialia.

[10]  Andrea Meyer-Lindenberg,et al.  Profound differences in the in‐vivo‐degradation and biocompatibility of two very similar rare‐earth containing Mg‐alloys in a rabbit model , 2010 .

[11]  M. Fathi,et al.  Bio-corrosion behavior of magnesium-fluorapatite nanocomposite for biomedical applications , 2010 .

[12]  M. Fathi,et al.  Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications , 2010 .

[13]  Yuan Lu,et al.  The mechanical properties of co-continuous Si3N4/Al composites manufactured by squeeze casting , 2010 .

[14]  Yufeng Zheng,et al.  Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites , 2010 .

[15]  Meng Yang,et al.  In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites , 2010, Journal of materials science. Materials in medicine.

[16]  M. Wong,et al.  Cerium-based coating for enhancing the corrosion resistance of bio-degradable Mg implants , 2010 .

[17]  J. Binner,et al.  Microstructure and property characterisation of 3-3 Al(Mg)/Al2O3 interpenetrating composites produced by a pressureless infiltration technique , 2010, Journal of Materials Science.

[18]  Yang Song,et al.  Research on an Mg-Zn alloy as a degradable biomaterial. , 2010, Acta biomaterialia.

[19]  Qiuming Peng,et al.  Preparation and properties of high purity Mg-Y biomaterials. , 2010, Biomaterials.

[20]  M. Vallet‐Regí,et al.  In vitro structural changes in porous HA/beta-TCP scaffolds in simulated body fluid. , 2009, Acta biomaterialia.

[21]  Yufeng Zheng,et al.  A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate. , 2009, Acta biomaterialia.

[22]  C. Xie,et al.  In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy , 2009 .

[23]  E. Cheek,et al.  The cytotoxicity of highly porous medical carbon adsorbents , 2009 .

[24]  Ke Yang,et al.  Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application , 2009 .

[25]  Ke Yang,et al.  In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. , 2009, Biomaterials.

[26]  Yufeng Zheng,et al.  In vitro corrosion and biocompatibility of binary magnesium alloys. , 2009, Biomaterials.

[27]  Lei Yang,et al.  Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application , 2008 .

[28]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[29]  Ivan Martin,et al.  Design of graded biomimetic osteochondral composite scaffolds. , 2008, Biomaterials.

[30]  D. Yin,et al.  Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy , 2008 .

[31]  Debabrata Basu,et al.  In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[32]  M. Yardim,et al.  Pore structure engineering for carbon foams as possible bone implant material. , 2008, Journal of biomedical materials research. Part A.

[33]  Jian Li,et al.  Mechanical and Biological Properties of Hydroxyapatite/tricalcium Phosphate Scaffolds Coated with Poly(lactic-co-glycolic Acid) , 2007 .

[34]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[35]  Ke Yang,et al.  In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application , 2008, Journal of materials science. Materials in medicine.

[36]  J. Hutchinson,et al.  Some basic relationships between density values in cancellous and cortical bone. , 2008, Journal of biomechanics.

[37]  J. Ferreira,et al.  Ionic Substitutions in Biphasic Hydroxyapatite and β‐Tricalcium Phosphate Mixtures: Structural Analysis by Rietveld Refinement , 2007 .

[38]  Ke Yang,et al.  In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. , 2007, Journal of biomedical materials research. Part A.

[39]  Feng Liang,et al.  Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. , 2007, Biomaterials.

[40]  M. Störmer,et al.  Biodegradable magnesium-hydroxyapatite metal matrix composites. , 2007, Biomaterials.

[41]  Guang-Ling Song,et al.  Control of biodegradation of biocompatable magnesium alloys , 2007 .

[42]  G. Song,et al.  Degradation of the surface appearance of magnesium and its alloys in simulated atmospheric environments , 2007 .

[43]  D. Khakhar,et al.  Reticulated vitreous carbon from polyurethane foam–clay composites , 2007 .

[44]  F. Béguin,et al.  In vitro studies of carbon nanotubes biocompatibility , 2006 .

[45]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[46]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[47]  W. Lim,et al.  Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites , 2005 .

[48]  J. Lo,et al.  Mg alloy infiltrated Si–O–C ceramic foams , 2005 .

[49]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[50]  L. Francis,et al.  Processing and properties of porous poly(L-lactide)/bioactive glass composites. , 2004, Biomaterials.

[51]  F. Müller,et al.  Biomimetic apatite formation on chemically treated titanium. , 2004, Biomaterials.

[52]  C. Migliaresi,et al.  Composite materials for biomedical applications: a review. , 2008, Journal of applied biomaterials & biomechanics : JABB.

[53]  Sylwester Gogolewski,et al.  Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. , 2003, Journal of biomedical materials research. Part A.

[54]  Zhang Di,et al.  Microstructure and properties of ecoceramics/metal composites with interpenetrating networks , 2003 .

[55]  Seong‐Hyeon Hong,et al.  Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powders , 2003 .

[56]  James W. Klett,et al.  Carbon foams for thermal management , 2003 .

[57]  C. Ding,et al.  Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. , 2000, Biomaterials.

[58]  S. Corbin,et al.  Functionally graded metal/ceramic composites by tape casting, lamination and infiltration , 1999 .

[59]  M. Lewandowska-Szumieł,et al.  Interaction between carbon composites and bone after intrabone implantation. , 1999, Journal of biomedical materials research.

[60]  T. Kokubo,et al.  Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process , 1996 .

[61]  W. Ferrando Review of corrosion and corrosion control of magnesium alloys and composites , 1989 .

[62]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .