GaN Integration Technology, an Ideal Candidate for High-Temperature Applications: A Review

In many leading industrial applications such as aerospace, military, automotive, and deep-well drilling, extreme temperature environment is the fundamental hindrance to the use of microelectronic devices. Developing an advanced technology with robust electrical and material properties dedicated for high-temperature environments represents a significant progress allowing to control and monitor the harsh environment regions. It may avoid using cooling structures while improving the reliability of the whole electronic systems. As a wide bandgap semiconductor, gallium nitride is considered as an ideal candidate for such environments, as well as in high-power and high-frequency applications. We review in this paper the main reasons that offer superiority to GaN devices over better-known technologies such as silicon (Si), silicon-on-insulator, gallium arsenide (GaAs), silicon germanium (SiGe), and silicon carbide (SiC). The theory of operation and main challenges at high temperature are discussed, notably those related to materials and contacts. In addition, the main limitations of GaN, including the technological (thermal and chemical) and intrinsic (current collapse and device self-heating) features are provided. In addition, the GaN devices recently developed for high-temperature applications are examined.

[1]  Lenian He,et al.  25.2 A 10MHz 3-to-40V VIN tri-slope gate driving GaN DC-DC converter with 40.5dBµV spurious noise compression and 79.3% ringing suppression for automotive applications , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[2]  Miroslav Micovic,et al.  GaN HFET digital circuit technology , 2004 .

[3]  Mohammed Alomari,et al.  Technology and characterization of InAlN/GaN FETs , 2013 .

[4]  C. Gaquiere,et al.  Can InAlN/GaN be an alternative to high power / high temperature AlGaN/GaN devices? , 2006, 2006 International Electron Devices Meeting.

[5]  Mohamad Sawan,et al.  Wireless power transfer through metallic barriers enclosing a harsh environment; feasibility and preliminary results , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[6]  Xiaoping Li,et al.  High Temperature Characteristics of GaN-Based Inverter Integrated With Enhancement-Mode (E-Mode) MOSFET and Depletion-Mode (D-Mode) HEMT , 2014, IEEE Electron Device Letters.

[7]  Edward T. Yu,et al.  Demonstration and analysis of reduced reverse-bias leakage current via design of nitride semiconductor heterostructures grown by molecular-beam epitaxy , 2006 .

[8]  Hans Lüth,et al.  Fabrication and characterization of AlGaN/GaN high electron mobility transistors , 2004 .

[9]  Shyh-Chiang Shen,et al.  Bipolar III-N high-power electronic devices , 2013, The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications.

[10]  Christophe Gaquiere,et al.  Diamond overgrown InAlN/GaN HEMT , 2011 .

[11]  Michael S. Shur,et al.  Novel AlInN/GaN integrated circuits operating up to 500 °C , 2015 .

[12]  Fernando Calle,et al.  Thermal Assessment of AlGaN/GaN MOS-HEMTs on Si Substrate Using Gd2O3 as Gate Dielectric , 2016, IEEE Transactions on Electron Devices.

[13]  P. Parikh,et al.  40-W/mm Double Field-plated GaN HEMTs , 2006, 2006 64th Device Research Conference.

[14]  R. Cuerdo,et al.  Characterization of Schottky contacts on n-GaN at high temperature , 2005, Conference on Electron Devices, 2005 Spanish.

[15]  Eric Feltin,et al.  Self heating in AlInN/AlN/GaN high power devices: Origin and impact on contact breakdown and IV characteristics , 2011 .

[16]  Hangfeng Ji,et al.  Integrated micro-Raman/infrared thermography probe for monitoring of self-heating in AlGaN/GaN transistor structures , 2006, IEEE Transactions on Electron Devices.

[17]  S. Delage,et al.  Above 500 °C operation of InAlN/GaN HEMTs , 2009, 2009 Device Research Conference.

[18]  N. Grandjean,et al.  Towards electronics at 1000 °C , 2011, 69th Device Research Conference.

[19]  Chungman Yang Fabrication and characterization of AlGaN/GaN High Electron Mobility Transistor , 2015 .

[20]  Dionyz Pogany,et al.  MOCVD of HfO2 and ZrO2 high-k gate dielectrics for InAlN/AlN/GaN MOS-HEMTs , 2007 .

[21]  P. Neudeck,et al.  High-temperature electronics - a role for wide bandgap semiconductors? , 2002, Proc. IEEE.

[22]  P. Romanini,et al.  Experimental validation of GaN HEMTs thermal management by using photocurrent measurements , 2006, IEEE Transactions on Electron Devices.

[23]  D. Ducatteau,et al.  High-Performance Low-Leakage-Current AlN/GaN HEMTs Grown on Silicon Substrate , 2011, IEEE Electron Device Letters.

[24]  Guan-Ting Chen,et al.  MgO/p-GaN enhancement mode metal-oxide semiconductor field-effect transistors , 2004 .

[25]  G. Simin,et al.  Selectively Doped High-Power AlGaN/InGaN/GaN MOS-DHFET , 2007, IEEE Electron Device Letters.

[26]  F. Wang,et al.  Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges , 2016, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[27]  Mohamad Sawan,et al.  Stability of GaN150-based HEMT in high temperature up to 400°C , 2017, 2017 15th IEEE International New Circuits and Systems Conference (NEWCAS).

[28]  Mohamad Sawan,et al.  Electronics and Packaging Intended for Emerging Harsh Environment Applications: A Review , 2018, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[29]  S. Haffouz,et al.  AlGaN/GaN field effect transistors with C-doped GaN buffer layer as an electrical isolation template grown by molecular beam epitaxy , 2005 .

[30]  H. Tsai,et al.  Deposition of CVD diamond onto GaN , 2006 .

[31]  Achim Seidel,et al.  25.3 A 1.3A gate driver for GaN with fully integrated gate charge buffer capacitor delivering 11nC enabled by high-voltage energy storing , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[32]  Philip G. Neudeck SiC Integrated Circuit Platforms for High-Temperature Applications , 2012 .

[33]  Szu-Hao Chen,et al.  Evaluation and Reliability Assessment of GaN-on-Si MIS-HEMT for Power Switching Applications , 2017 .

[34]  Adele E. Schmitz,et al.  Enhancement-Mode AlN/GaN/AlGaN DHFET With 700-mS/mm $g_{m}$ and 112-GHz $f_{T}$ , 2010 .

[35]  B. J. Baliga,et al.  Modern Power Devices , 1987 .

[36]  Toshiki Makimoto,et al.  High-temperature characteristics up to 590 °c of a pnp AlGaN/GaN heterojunction bipolar transistor , 2009 .

[37]  Alex Lidow,et al.  GaN-on-Si Power Technology: Devices and Applications , 2017, IEEE Transactions on Electron Devices.

[38]  Ramakrishna Vetury,et al.  History of GaN: High-Power RF Gallium Nitride (GaN) from Infancy to Manufacturable Process and Beyond , 2013, IEEE Microwave Magazine.

[39]  Wu Lu,et al.  Pt-AlGaN∕GaN Schottky diodes operated at 800°C for hydrogen sensing , 2005 .

[40]  Patrick Fay,et al.  245-GHz InAlN/GaN HEMTs With Oxygen Plasma Treatment , 2011, IEEE Electron Device Letters.

[41]  E. Kohn,et al.  Evaluation of the temperature stability of AlGaN/GaN heterostructure FETs , 1999, IEEE Electron Device Letters.

[42]  J. Laskar,et al.  Thermal analysis of AlGaN-GaN power HFETs , 2003 .

[43]  V. Tilak,et al.  Effects of SiN passivation and high-electric field on AlGaN-GaN HFET degradation , 2003, IEEE Electron Device Letters.

[44]  J. J. Tietjen,et al.  THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN , 1969 .

[45]  Christophe Gaquiere,et al.  High temperature stability of nitride-based power HEMTs , 2010, 18-th INTERNATIONAL CONFERENCE ON MICROWAVES, RADAR AND WIRELESS COMMUNICATIONS.

[46]  H. B. Wallace,et al.  Impact of wide bandgap microwave devices on DoD systems , 2002, Proc. IEEE.

[47]  S. Delage,et al.  InAlN/GaN HEMTs for Operation in the 1000 $^{\circ} \hbox{C}$ Regime: A First Experiment , 2012, IEEE Electron Device Letters.

[48]  Michael S. Shur,et al.  Si3N4/AlGaN/GaN–metal–insulator–semiconductor heterostructure field–effect transistors , 2001 .

[49]  R. J. Shul,et al.  Depth and thermal stability of dry etch damage in GaN Schottky diodes , 1999 .

[50]  Naoki Kobayashi,et al.  Low Resistance Non-Alloy Ohmic Contact to p-Type GaN Using Mg-Doped InGaN Contact Layer , 2001 .

[51]  Oliver Ambacher,et al.  Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition , 1996 .

[52]  Xiang Gao,et al.  Gate-Recessed InAlN/GaN HEMTs on SiC Substrate With $ \hbox{Al}_{2}\hbox{O}_{3}$ Passivation , 2009, IEEE Electron Device Letters.

[53]  H. Alan Mantooth Power Device Platforms , 2012 .

[54]  E. Kohn,et al.  Characteristics of Al2O3=AlInN=GaN MOSHEMT , 2007 .

[55]  Michael S. Shur,et al.  Novel AlInN/GaN integrated circuits operating up to 500 °C , 2014, 2014 44th European Solid State Device Research Conference (ESSDERC).

[56]  John D. Cressler,et al.  Power Device Platforms , 2012 .

[57]  Philippe Godignon,et al.  SiC Integrated Circuit Control Electronics for High-Temperature Operation , 2015, IEEE Transactions on Industrial Electronics.

[58]  G.Y. Zhang,et al.  Low resistance Ti/Al/Ni/Au Ohmic contact to (NH4)2Sx treated n-type GaN for high temperature applications , 2008, 2008 9th International Conference on Solid-State and Integrated-Circuit Technology.

[59]  H. Xing,et al.  Temperature dependent I-V characteristics of AlGaN/GaN HBTs and GaN BJTs , 2004, Proceedings. IEEE Lester Eastman Conference on High Performance Devices, 2004..

[60]  R. S. Pengelly,et al.  A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs , 2012, IEEE Transactions on Microwave Theory and Techniques.

[61]  Theeradetch Detchprohm,et al.  Temperature-Dependent Characteristics of GaN Homojunction Rectifiers , 2015, IEEE Transactions on Electron Devices.

[62]  Toshiki Makimoto,et al.  High-power characteristics of GaN/InGaN double heterojunction bipolar transistors , 2004 .

[63]  Nicolas Grandjean,et al.  GaN-on-insulator technology for high-temperature electronics beyond 400 °C , 2013 .

[64]  Michele Dipalo,et al.  Combining diamond electrodes with GaN heterostructures for harsh environment ISFETs , 2009 .

[65]  Mohamad Sawan,et al.  High-Temperature Modeling of the I-V Characteristics of GaN150 HEMT Using Machine Learning Techniques , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[66]  Xiang Gao,et al.  Gate-Recessed InAlN/GaN HEMTs on SiC Substrate With Al[subscript 2]O[subscript 3] Passivation , 2009 .

[67]  W. E. Hoke,et al.  AlGaN/GaN HEMT With 300-GHz $f_{\max}$ , 2010 .

[68]  C. Gaquiere,et al.  Characteristics of Al/sub 2/O/sub 3//AllnN /GaN MOSHEMT , 2007 .

[69]  Shyh-Chiang Shen,et al.  GaN/InGaN heterojunction bipolar transistors with ultra‐high d.c. power density (>3 MW/cm2) , 2012 .

[70]  M. Kuball,et al.  Thermal management and device failure assessment of high-power AlGaN/GaN HFETs , 2002, 60th DRC. Conference Digest Device Research Conference.

[71]  S. Cassette,et al.  SThM Temperature Mapping and Nonlinear Thermal Resistance Evolution With Bias on AlGaN/GaN HEMT Devices , 2007, IEEE Transactions on Electron Devices.

[72]  Umesh K. Mishra,et al.  High-transconductance self-aligned AlGaN/GaN modulation-doped field-effect transistors with regrown ohmic contacts , 1998 .

[73]  Christian Dua,et al.  Testing the Temperature Limits of GaN-Based HEMT Devices , 2010, IEEE Transactions on Device and Materials Reliability.

[74]  Hideki Hasegawa,et al.  Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3 dielectric , 2003 .

[75]  Kevin N. Martin European gallium nitride capability , 2015, 2015 IEEE Radar Conference (RadarCon).

[76]  Stephen B. Bayne,et al.  GaN Technology for Power Electronic Applications: A Review , 2016, Journal of Electronic Materials.

[77]  S. Keller,et al.  High Breakdown Voltage Achieved on AlGaN/GaN HEMTs With Integrated Slant Field Plates , 2006, IEEE Electron Device Letters.

[78]  R. J. Shul,et al.  GAN : PROCESSING, DEFECTS, AND DEVICES , 1999 .

[79]  Takashi Jimbo,et al.  Characterization of different-Al-content AlxGa1−xN/GaN heterostructures and high-electron-mobility transistors on sapphire , 2003 .

[80]  Milton Feng,et al.  AlGaN/GaN heterojunction bipolar transistors grown by metal organic chemical vapour deposition , 2000 .