Graph Separators: A Parameterized View

Graph separation is a well-known tool to make (hard) graph problems accessible to a divide-and-conquer approach. We show how to use graph separator theorems in combination with (linear) problem kernels in order to develop fixed parameter algorithms for many well-known NP-hard (planar) graph problems. We coin the key notion of glueable select&verify graph problems and derive from that a prospective way to easily check whether a planar graph problem will allow for a fixed parameter algorithm of running time c√kno(1) for constant c. One of the main contributions of the paper is to exactly compute the base c of the exponential term and its dependence on the various parameters specified by the employed separator theorem and the underlying graph problem. We discuss several strategies to improve on the involved constant c.

[1]  Hristo Djidjev,et al.  Computing the Girth of a Planar Graph , 2000, ICALP.

[2]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .

[3]  Robin Thomas,et al.  A separator theorem for graphs with an excluded minor and its applications , 1990, STOC '90.

[4]  Rolf Niedermeier,et al.  Efficient Data Reduction for DOMINATING SET: A Linear Problem Kernel for the Planar Case , 2002, SWAT.

[5]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[6]  V. Paschos A survey of approximately optimal solutions to some covering and packing problems , 1997, CSUR.

[7]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[8]  Rolf Niedermeier,et al.  On efficient fixed-parameter algorithms for weighted vertex cover , 2003, J. Algorithms.

[9]  Jan Arne Telle,et al.  Complexity of Domination-Type Problems in Graphs , 1994, Nord. J. Comput..

[10]  S.S. Ravi,et al.  An Application of the Planar Separator Theorem to Counting Problems , 1987, Inf. Process. Lett..

[11]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[12]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[13]  Rolf Niedermeier,et al.  Refined Search Tree Technique for DOMINATING SET on Planar Graphs , 2001, MFCS.

[14]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for PLANAR DOMINATING SET and Related Problems , 2000, SWAT.

[15]  H. Djidjev On the Problem of Partitioning Planar Graphs , 1982 .

[16]  Reuven Bar-Yehuda,et al.  A Local-Ratio Theorem for Approximating the Weighted Vertex Cover Problem , 1983, WG.

[17]  Martin Grohe Local Tree-Width, Excluded Minors, and Approximation Algorithms , 2003, Comb..

[18]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[19]  Rolf Niedermeier,et al.  Faster exact algorithms for hard problems: A parameterized point of view , 2001, Discret. Math..

[20]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[21]  Michael R. Fellows,et al.  Parameterized Complexity: The Main Ideas and Some Research Frontiers , 2009, ISAAC.

[22]  Hristo Djidjev,et al.  Linear Algorithms for Partitioning Embedded Graphs of Bounded Genus , 1996, SIAM J. Discret. Math..

[23]  Robin Thomas,et al.  Planar Separators , 1994, SIAM J. Discret. Math..

[24]  Robin Thomas,et al.  Efficiently four-coloring planar graphs , 1996, STOC '96.

[25]  Rolf Niedermeier,et al.  Graph Separators: A Parameterized View , 2001, COCOON.

[26]  Rolf Niedermeier,et al.  Fixed parameter algorithms for planar dominating set , 2000 .

[27]  Shankar M. Venkatesan Improved Constants for Some Separator Theorems , 1987, J. Algorithms.

[28]  David W. Juedes,et al.  Subexponential Parameterized Algorithms Collapse the W -hierarchy* (Extended Abstract) , 2001 .

[29]  Dorit S. Hochbaum,et al.  Approximation Algorithms for the Set Covering and Vertex Cover Problems , 1982, SIAM J. Comput..

[30]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[31]  N. Alon,et al.  A separator theorem for nonplanar graphs , 1990 .

[32]  Zhi-Zhong Chen,et al.  Approximation Algorithms for Independent Sets in Map Graphs , 2000, J. Algorithms.

[33]  Hristo Djidjev,et al.  Reduced constants for simple cycle graph separation , 1997, Acta Informatica.

[34]  Rolf Niedermeier,et al.  Parameterized complexity: exponential speed-up for planar graph problems , 2001, J. Algorithms.

[35]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[36]  Jan Arne Telle,et al.  Practical Algorithms on Partial k-Trees with an Application to Domination-like Problems , 1993, WADS.

[37]  Shang-Hua Teng,et al.  Disk packings and planar separators , 1996, SCG '96.

[38]  Rolf Niedermeier,et al.  Upper Bounds for Vertex Cover Further Improved , 1999, STACS.

[39]  David Eppstein Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.

[40]  Zhi-Zhong Chen,et al.  Map graphs , 1999, JACM.

[41]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[42]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[43]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[44]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[45]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 1999, J. Algorithms.