Total Variation and Mean Curvature PDEs on the Homogeneous Space of Positions and Orientations

Two key ideas have greatly improved techniques for image enhancement and denoising: the lifting of image data to multi-orientation distributions and the application of nonlinear PDEs such as total variation flow (TVF) and mean curvature flow (MCF). These two ideas were recently combined by Chambolle and Pock (for TVF) and Citti et al. (for MCF) for two-dimensional images. In this work, we extend their approach to enhance and denoise images of arbitrary dimension, creating a unified geometric and algorithmic PDE framework, relying on (sub-)Riemannian geometry. In particular, we follow a different numerical approach, for which we prove convergence in the case of TVF by an application of Brezis–Komura gradient flow theory. Our framework also allows for additional data adaptation through the use of locally adaptive frames and coherence enhancement techniques. We apply TVF and MCF to the enhancement and denoising of elongated structures in 2D images via orientation scores and compare the results to Perona–Malik diffusion and BM3D. We also demonstrate our techniques in 3D in the denoising and enhancement of crossing fiber bundles in DW-MRI. In comparison with data-driven diffusions, we see a better preservation of bundle boundaries and angular sharpness in fiber orientation densities at crossings.

[1]  Jan Lellmann,et al.  Measure-Valued Variational Models with Applications to Diffusion-Weighted Imaging , 2017, Journal of Mathematical Imaging and Vision.

[2]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[3]  Remco Duits,et al.  Numerical schemes for linear and non-linear enhancement of DW-MRI , 2013 .

[4]  Giovanna Citti,et al.  A Geometric Model of Multi-scale Orientation Preference Maps via Gabor Functions , 2017, Journal of Mathematical Imaging and Vision.

[5]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[6]  Jean-Marie Mirebeau,et al.  Anisotropic Fast-Marching on Cartesian Grids Using Lattice Basis Reduction , 2012, SIAM J. Numer. Anal..

[7]  Hans Burkhardt,et al.  Efficient Tensor Voting with 3D tensorial harmonics , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[8]  Marc Lebrun,et al.  An Analysis and Implementation of the BM3D Image Denoising Method , 2012, Image Process. Line.

[9]  Remco Duits,et al.  Numerical Approaches for Linear Left-invariant Diffusions on SE(2), their Comparison to Exact Solutions, and their Applications in Retinal Imaging , 2014, Numerical Mathematics: Theory, Methods and Applications.

[10]  R. Duits,et al.  On Sub-Riemannian Geodesics in SE(3) Whose Spatial Projections do not Have Cusps , 2013 .

[11]  Remco Duits,et al.  The Hessian of Axially Symmetric Functions on SE(3) and Application in 3D Image Analysis , 2017, SSVM.

[12]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[13]  Remco Duits,et al.  Optimal Paths for Variants of the 2D and 3D Reeds–Shepp Car with Applications in Image Analysis , 2016, Journal of Mathematical Imaging and Vision.

[14]  R. Duits,et al.  Fourier Transform on the Homogeneous Space of 3D Positions and Orientations for Exact Solutions to PDEs , 2018 .

[15]  Laurent D. Cohen,et al.  3D Vessel Extraction in the Rat Brain from Ultrasensitive Doppler Images , 2018 .

[16]  J. Portegies PDEs on the Lie group SE(3) and their application in diffusion-weighted MRI , 2018 .

[17]  Julius Hannink,et al.  Locally Adaptive Frames in the Roto-Translation Group and Their Applications in Medical Imaging , 2015, Journal of Mathematical Imaging and Vision.

[18]  Valerij G. Kiselev,et al.  Fiber Continuity: An Anisotropic Prior for ODF Estimation , 2011, IEEE Transactions on Medical Imaging.

[19]  Jean-Marie Mirebeau Fast-Marching Methods for Curvature Penalized Shortest Paths , 2017, Journal of Mathematical Imaging and Vision.

[20]  L. Florack,et al.  Brain Connectivity Measures via Direct Sub-Finslerian Front Propagation on the 5D Sphere Bundle of Positions and Directions , 2019, Computational Diffusion MRI.

[21]  Antonin Chambolle,et al.  Total roto-translational variation , 2017, Numerische Mathematik.

[22]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[23]  Remco Duits,et al.  Erratum to: Morphological and Linear Scale Spaces for Fiber Enhancement in DW-MRI , 2012, Journal of Mathematical Imaging and Vision.

[24]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[25]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[26]  Marcelo Bertalmío,et al.  A Decomposition Framework for Image Denoising Algorithms , 2016, IEEE Transactions on Image Processing.

[27]  E. Franken Enhancement of crossing elongated structures in images , 2008 .

[28]  Marcelo Bertalmío,et al.  A cortical-inspired model for orientation-dependent contrast perception: a link with Wilson-Cowan equations , 2018, SSVM.

[29]  Ugo Boscain,et al.  Highly Corrupted Image Inpainting Through Hypoelliptic Diffusion , 2018, Journal of Mathematical Imaging and Vision.

[30]  Martin Burger,et al.  Computing Nonlinear Eigenfunctions via Gradient Flow Extinction , 2019, SSVM.

[31]  Remco Duits,et al.  Numerical Schemes for Linear and Non-linear Enhancement of DW-MRI , 2011, SSVM.

[32]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[33]  Remco Duits,et al.  Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution , 2015, PloS one.

[34]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[35]  R. Duits,et al.  Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part I: Linear left-invariant diffusion equations on SE(2) , 2010 .

[36]  Joachim Weickert,et al.  Fachrichtung 6 . 1 – Mathematik Preprint Nr . 365 Morphological Counterparts of Linear Shift-Invariant Scale-Spaces , 2016 .

[37]  Marco Messina,et al.  Improved Edge Enhancing Diffusion Filter for Speckle-Corrupted Images , 2014, IEEE Geoscience and Remote Sensing Letters.

[38]  Remco Duits,et al.  A PDE Approach to Data-Driven Sub-Riemannian Geodesics in SE(2) , 2015, SIAM J. Imaging Sci..

[39]  Remco Duits,et al.  Crossing-Preserving Coherence-Enhancing Diffusion on Invertible Orientation Scores , 2009, International Journal of Computer Vision.

[40]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[41]  Remco Duits,et al.  Design and Processing of Invertible Orientation Scores of 3D Images , 2018, Journal of Mathematical Imaging and Vision.

[42]  Alex M. Andrew,et al.  HETEROGENEOUS AGENT SYSTEMS, by V.S. Subrahmanian, Piero Bonatti, Jürgen Dix, Thomas Etier, Sarit Kraus, Fatma Ozcan and Robert Ross, MIT Press, Cambridge, Mass., 2000, xiv+580pp., ISBN 0-262-19436-8 (Hardback, £39.95). , 2001, Robotica.

[43]  Bram Stieltjes,et al.  Fiberfox: Facilitating the creation of realistic white matter software phantoms , 2014, Magnetic resonance in medicine.

[44]  Luc Florack,et al.  Stability metrics for optic radiation tractography: Towards damage prediction after resective surgery , 2017, Journal of Neuroscience Methods.

[45]  Remco Duits,et al.  Total Variation and Mean Curvature PDEs on the Space of Positions and Orientations , 2019, SSVM.

[46]  Y. Giga,et al.  Generalized interface evolution with the Neumann boundary condition , 1991 .

[47]  G. Chirikjian,et al.  Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups , 2000 .

[48]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Bohua Zhan,et al.  Smooth Manifolds , 2021, Arch. Formal Proofs.

[50]  R. Duits,et al.  Morphological and Linear Scale Spaces for Fiber Enhancement in DW-MRI , 2013, J. Math. Imaging Vis..

[51]  Ido Cohen,et al.  Stable Explicit p-Laplacian Flows Based on Nonlinear Eigenvalue Analysis , 2019, SSVM.

[52]  E. Bekkers Retinal image analysis using sub-Riemannian geometry in SE(2) , 2017 .

[53]  Michael Felsberg,et al.  Channel smoothing: efficient robust smoothing of low-level signal features , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Kaleem Siddiqi,et al.  3D Stochastic Completion Fields for Mapping Connectivity in Diffusion MRI , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[56]  R. Duits,et al.  New Exact and Numerical Solutions of the (Convection-)Diffusion Kernels on SE(3) , 2016, 1604.03843.

[57]  E. Baspinar Minimal Surfaces in Sub-Riemannian Structures and Functional Geometry of the Visual Cortex , 2018 .

[58]  L. Ambrosio,et al.  BV functions and sets of finite perimeter in sub-Riemannian manifolds , 2013, 1303.6074.

[59]  Moto-Hiko Sato Interface evolution with Neumann boundary condition , 1992 .

[60]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[61]  Giovanna Citti,et al.  Sub-Riemannian Mean Curvature Flow for Image Processing , 2015, SIAM J. Imaging Sci..