Multilag Correlation Estimators for Polarimetric Radar Measurements in the Presence of Noise

AbstractThe quality of polarimetric radar data degrades as the signal-to-noise ratio (SNR) decreases. This substantially limits the usage of collected polarimetric radar data to high SNR regions. To improve data quality at low SNRs, multilag correlation estimators are introduced. The performance of the multilag estimators for spectral moments and polarimetric parameters is examined through a theoretical analysis and by the use of simulated data. The biases and standard deviations of the estimates are calculated and compared with those estimates obtained using the conventional method.

[1]  D. Zrnic,et al.  Spectral Moment Estimates from Correlated Pulse Pairs , 1977, IEEE Transactions on Aerospace and Electronic Systems.

[2]  Dusan Zrnic,et al.  Estimation of Spectral Moments for Weather Echoes , 1979, IEEE Transactions on Geoscience Electronics.

[3]  Sutanay Choudhury,et al.  Computer simulation of weather radar signals , 2002 .

[4]  Time-Domain Computation of Mean and Variance of Doppler Spectra , 1979 .

[5]  A. Ryzhkov,et al.  Polarimetry for Weather Surveillance Radars , 1999 .

[6]  D. Zrnic,et al.  Doppler Radar and Weather Observations , 1984 .

[7]  V. Chandrasekar,et al.  Clutter Suppression for Staggered PRT Waveforms , 2008 .

[8]  Lei Lei,et al.  A multi-lag correlation estimator for polarimetric radar variables in the presence of noise , 2009 .

[9]  Louis Janssen,et al.  The Shape of Doppler Spectra from Precipitation , 1985, IEEE Transactions on Aerospace and Electronic Systems.

[10]  D. S. Zrnic,et al.  Differential propagation phase shift and rainfall rate estimation , 1986 .

[11]  Mamoru Yamamoto,et al.  Errors in the Determination of Wind Speed by Doppler Radar , 1989 .

[12]  Alexander V. Ryzhkov,et al.  The Hydrometeor Classification Algorithm for the Polarimetric WSR-88D: Description and Application to an MCS , 2009 .

[13]  M. Sachidananda,et al.  ZDR measurement considerations for a fast scan capability radar , 1985 .

[14]  Valery M. Melnikov,et al.  SIMULTANEOUS TRANSMISSION MODE FOR THE POLARIMETRIC WSR-88D , 2004 .

[15]  T. R. Thomas Computer simulation of wear , 1972 .

[16]  Guifu Zhang,et al.  Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment , 2002 .

[17]  Guifu Zhang,et al.  Performance of correlation estimators for spaced‐antenna wind measurement in the presence of noise , 2004 .

[18]  M. Xue,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications , 2001 .

[19]  Guifu Zhang,et al.  Cross‐correlation ratio method to estimate cross‐beam wind and comparison with a full correlation analysis , 2003 .

[20]  Valery M. Melnikov,et al.  Autocorrelation and Cross-Correlation Estimators of Polarimetric Variables , 2007 .

[21]  Dusan S. Zrnic,et al.  Simulation of Weatherlike Doppler Spectra and Signals , 1975 .

[22]  K. Droegemeier,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification , 2000 .

[23]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar: Principles and Applications , 2001 .

[24]  Valery M. Melnikov One-Lag Estimators for Cross-Polarization Measurements , 2006 .

[25]  V. N. Bringi,et al.  Studies of the Polarimetric Covariance Matrix. Part I: Calibration Methodology , 2003 .

[26]  Richard J. Doviak,et al.  Spectrum Width Measured by WSR-88D: Error Sources and Statistics of Various Weather Phenomena , 2004 .

[27]  Guifu Zhang,et al.  A method for estimating rain rate and drop size distribution from polarimetric radar measurements , 2001, IEEE Trans. Geosci. Remote. Sens..