Consistent Shape Matching via Coupled Optimization

We propose a new method for computing accurate point‐to‐point mappings between a pair of triangle meshes given imperfect initial correspondences. Unlike the majority of existing techniques, we optimize for a map while leveraging information from the inverse map, yielding results which are highly consistent with respect to composition of mappings. Remarkably, our method considers only a linear number of candidate points on the target shape, allowing us to work directly with high resolution meshes, and to avoid a delicate and possibly error‐prone up‐sampling procedure. Key to this dimensionality reduction is a novel candidate selection process, where the mapped points drift over the target shape, finalizing their location based on intrinsic distortion measures. Overall, we arrive at an iterative scheme where at each step we optimize for the map and its inverse by solving two relaxed Quadratic Assignment Problems using off‐the‐shelf optimization tools. We provide quantitative and qualitative comparison of our method with several existing techniques, and show that it provides a powerful matching tool when accurate and consistent correspondences are required.

[1]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Yaron Lipman,et al.  DS++ , 2017, ACM Trans. Graph..

[3]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[4]  Vladimir G. Kim,et al.  Data‐Driven Shape Analysis and Processing , 2015, Comput. Graph. Forum.

[5]  Mirela Ben-Chen,et al.  Reversible Harmonic Maps between Discrete Surfaces , 2018, ACM Trans. Graph..

[6]  Ron Kimmel,et al.  Spectral Generalized Multi-dimensional Scaling , 2013, International Journal of Computer Vision.

[7]  R. Kimmel,et al.  Matching shapes by eigendecomposition of the Laplace-Beltrami operator , 2010 .

[8]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[11]  Alexander M. Bronstein,et al.  A game-theoretic approach to deformable shape matching , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[13]  Daniel Cremers,et al.  Efficient Deformable Shape Correspondence via Kernel Matching , 2017, 2017 International Conference on 3D Vision (3DV).

[14]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, SIGGRAPH 2011.

[15]  Sebastian Thrun,et al.  The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces , 2004, NIPS.

[16]  Maks Ovsjanikov,et al.  Adjoint Map Representation for Shape Analysis and Matching , 2017, Comput. Graph. Forum.

[17]  Michael J. Black,et al.  FAUST: Dataset and Evaluation for 3D Mesh Registration , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Leonidas J. Guibas,et al.  An optimization approach for extracting and encoding consistent maps in a shape collection , 2012, ACM Trans. Graph..

[19]  Leonidas J. Guibas,et al.  An Optimization Approach to Improving Collections of Shape Maps , 2011, Comput. Graph. Forum.

[20]  Leonidas J. Guibas,et al.  Consistent Shape Maps via Semidefinite Programming , 2013, SGP '13.

[21]  Vladimir G. Kim,et al.  Entropic metric alignment for correspondence problems , 2016, ACM Trans. Graph..

[22]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[23]  Abdel Nasser,et al.  A Survey of the Quadratic Assignment Problem , 2014 .

[24]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[25]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[26]  Wotao Yin,et al.  Consistent Dynamic Mode Decomposition , 2019, SIAM J. Appl. Dyn. Syst..

[27]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[28]  Yücel Yemez,et al.  Eurographics Symposium on Geometry Processing 2011 Coarse-to-fine Combinatorial Matching for Dense Isometric Shape Correspondence , 2022 .

[29]  Yaron Lipman,et al.  Hyperbolic orbifold tutte embeddings , 2016, ACM Trans. Graph..

[30]  Daniel Cremers,et al.  Dense Non-rigid Shape Correspondence Using Random Forests , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[32]  Martin Rumpf,et al.  Elastic Correspondence between Triangle Meshes , 2019, Comput. Graph. Forum.

[33]  Alexander M. Bronstein,et al.  Deep Functional Maps: Structured Prediction for Dense Shape Correspondence , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[34]  Ron Kimmel,et al.  Hierarchical Matching of Non-rigid Shapes , 2011, SSVM.

[35]  Vladlen Koltun,et al.  Robust Nonrigid Registration by Convex Optimization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[36]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Leonidas J. Guibas,et al.  Computing and processing correspondences with functional maps , 2016, SIGGRAPH Courses.

[38]  Davide Eynard,et al.  Coupled Functional Maps , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[39]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[41]  Ron Kimmel,et al.  Iterative Closest Spectral Kernel Maps , 2014, 2014 2nd International Conference on 3D Vision.

[42]  Leonidas J. Guibas,et al.  Functional map networks for analyzing and exploring large shape collections , 2014, ACM Trans. Graph..

[43]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[44]  Ron Kimmel,et al.  Classical Scaling Revisited , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[45]  Maks Ovsjanikov,et al.  Unsupervised Deep Learning for Structured Shape Matching , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[46]  Roi Poranne,et al.  Lifted bijections for low distortion surface mappings , 2014, ACM Trans. Graph..

[47]  Daniel Cremers,et al.  Product Manifold Filter: Non-rigid Shape Correspondence via Kernel Density Estimation in the Product Space , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Ronen Basri,et al.  Tight relaxation of quadratic matching , 2015, SGP '15.

[49]  Daniel Cremers,et al.  Geometrically consistent elastic matching of 3D shapes: A linear programming solution , 2011, 2011 International Conference on Computer Vision.

[50]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[51]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[52]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[53]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Nair Maria Maia de Abreu,et al.  A survey for the quadratic assignment problem , 2007, Eur. J. Oper. Res..

[56]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..