Efficient distributed algorithms for data fusion and node localization in mobile ad-hoc networks

Efficient distributed algorithms are an important enabling technology for large-scale ad-hoc wireless sensor and communications networks. In this paper, optimal Bayesian data fusion under the assumption of linear Gaussian state and measurement models is presented. Within this framework, an efficient algorithm for distributed state estimation in ad-hoc networks is developed. Approximate algorithms are then developed for further improvements in network resource efficiency. These include a parameterizable tradeoff of improved communications efficiency for increased latency in the rate at which information propagates through the network. It is also shown that the algorithms are well-suited for use with non-linear measurements. Finally, for distributed node position estimation in a mobile ad-hoc network, simulation results show that accurate, efficient node localization is achieved

[1]  Hugh F. Durrant-Whyte,et al.  Estimation and control for a modular wheeled mobile robot , 2000, IEEE Trans. Control. Syst. Technol..

[2]  D. McCrady,et al.  Mobile ranging using low-accuracy clocks , 2000 .

[3]  S. G. Carlson,et al.  A new pseudolite battlefield navigation system , 1998, IEEE 1998 Position Location and Navigation Symposium (Cat. No.98CH36153).

[4]  William Widnall,et al.  Stability of the Decentralized Estimation in the JTIDS Relative Navigation , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Mario Joa-Ng,et al.  A novel spread spectrum-based synchronization and location determination method for wireless system , 1999, IEEE Communications Letters.

[6]  Srdjan Capkun,et al.  GPS-free Positioning in Mobile Ad Hoc Networks , 2001, Proceedings of the 34th Annual Hawaii International Conference on System Sciences.

[7]  Randolph L. Moses,et al.  A Self-Localization Method for Wireless Sensor Networks , 2003, EURASIP J. Adv. Signal Process..

[8]  Ivan Stojmenovic,et al.  Position-based routing in ad hoc networks , 2002, IEEE Commun. Mag..

[9]  M. Hata,et al.  Mobile location using signal strength measurements in a cellular system , 1980, IEEE Transactions on Vehicular Technology.

[10]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[11]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..

[12]  Sung-Ju Lee,et al.  Selecting a routing strategy for your ad hoc network , 2003, Comput. Commun..

[13]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[14]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[15]  Anantha Chandrakasan,et al.  Energy-effiecient DSPs for wireless sensor networks - IEEE Signal Processing Magazine , 2001 .

[16]  Mani Srivastava,et al.  Dynamic Fine-Grained Localization in Ad-Hoc Wireless Sensor Networks , 2001 .

[17]  James J. Caffery,et al.  Wireless Location in CDMA Cellular Radio Systems , 1999 .

[18]  Francis J. Doyle,et al.  Structural analysis of large-scale systems for distributed state estimation and control applications , 2003 .

[19]  Sunwoo Kim,et al.  Geometric derivation of expectation-maximization and generalized successive interference cancellation algorithms with applications to CDMA channel estimation , 2003, IEEE Trans. Signal Process..

[20]  Rudolf Mathar,et al.  Location tracking of mobiles in cellular radio networks , 1999 .

[21]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[22]  Sunwoo Kim,et al.  CDMA Multipath Channel Estimation Using Generalized Successive Interference Cancellation Algorithm For Radiolocation , 2002 .

[23]  Hugh F. Durrant-Whyte,et al.  Decentralized Architecture for Asynchronous Sensors , 1999, Auton. Robots.

[24]  A. Chandrakasan,et al.  Energy-efficient DSPs for wireless sensor networks , 2002, IEEE Signal Process. Mag..

[25]  Mani B. Srivastava,et al.  The bits and flops of the n-hop multilateration primitive for node localization problems , 2002, WSNA '02.

[26]  Sunwoo Kim,et al.  Geolocation in ad hoc networks using DS-CDMA and generalized successive interference cancellation , 2005, IEEE Journal on Selected Areas in Communications.

[27]  X. R. Li,et al.  Optimal Linear Estimation Fusion — Part III : Cross-Correlation of Local Estimation Errors , 2001 .

[28]  E. Tse,et al.  Distributed Estimation in Networks , 1983, 1983 American Control Conference.

[29]  Jan M. Rabaey,et al.  Location in distributed ad-hoc wireless sensor networks , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[30]  Chongzhao Han,et al.  Optimal linear estimation fusion .I. Unified fusion rules , 2003, IEEE Trans. Inf. Theory.

[31]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[32]  L. El Ghaoui,et al.  Convex position estimation in wireless sensor networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[33]  Chris Savarese LOCATIONING IN DISTRIBUTED AD-HOC WIRELESS SENSOR NETWORKS , 2001 .

[34]  Deborah Estrin,et al.  GPS-less low-cost outdoor localization for very small devices , 2000, IEEE Wirel. Commun..

[35]  Alfred O. Hero,et al.  Relative location estimation in wireless sensor networks , 2003, IEEE Trans. Signal Process..

[36]  Sunwoo Kim,et al.  A matching-pursuit/GSIC-based algorithm for DS-CDMA sparse-channel estimation , 2004, IEEE Signal Processing Letters.

[37]  Ronald A. Iltis,et al.  DISTRIBUTED TERRESTRIAL RADIOLOCATION USING THE RLS ALGORITHM , 2002 .

[38]  Y. Bar-Shalom Tracking and data association , 1988 .