Spatio-Temporal Multi-Task Learning via Tensor Decomposition

Predictive modeling of large-scale spatio-temporal data is an important but challenging problem as it requires training models that can simultaneously predict the target variables of interest at multiple locations while preserving the spatial and temporal dependencies of the data. In this paper, we investigate the effectiveness of applying a multi-task learning approach based on supervised tensor decomposition to the spatio-temporal prediction problem. Our proposed framework, known as SMART, encodes the data as a third-order tensor and extracts a set of interpretable, spatial and temporal latent factors from the data. An ensemble of spatial and temporal prediction models are trained using the latent factors as their predictor variables. Outputs from the ensemble model are aggregated to make predictions on test instances. The framework also allows known patterns from the domain to be incorporated as constraints to guide the tensor decomposition and ensemble learning processes. As the data may grow over space and time, an incremental learning version of the framework is given to efficiently update the models. We perform extensive experiments using a global-scale climate dataset to evaluate the accuracy and efficiency of the models as well as interpretability of the latent factors.

[1]  Maja Pantic,et al.  Incremental multi-domain learning with network latent tensor factorization , 2019, AAAI.

[2]  Yanjie Fu,et al.  Co-Prediction of Multiple Transportation Demands Based on Deep Spatio-Temporal Neural Network , 2019, KDD.

[3]  Pang-Ning Tan,et al.  Distribution Preserving Multi-task Regression for Spatio-Temporal Data , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[4]  Shandian Zhe,et al.  Probabilistic Streaming Tensor Decomposition , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[5]  Rose Yu,et al.  Tensor Regression Meets Gaussian Processes , 2017, AISTATS.

[6]  Nikos D. Sidiropoulos,et al.  Streaming Tensor Factorization for Infinite Data Sources , 2018, SDM.

[7]  A. Karpatne,et al.  Spatio-Temporal Data Mining: A Survey of Problems and Methods , 2017, ArXiv.

[8]  Vaidy S. Sunderam,et al.  CP-ORTHO: An Orthogonal Tensor Factorization Framework for Spatio-Temporal Data , 2017, SIGSPATIAL/GIS.

[9]  Jiayu Zhou,et al.  Multi-level Multi-task Learning for Modeling Cross-Scale Interactions in Nested Geospatial Data , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[10]  Jiayu Zhou,et al.  Online Multi-Task Learning Framework for Ensemble Forecasting , 2017, IEEE Transactions on Knowledge and Data Engineering.

[11]  Fernando José Von Zuben,et al.  Spatial Projection of Multiple Climate Variables Using Hierarchical Multitask Learning , 2017, AAAI.

[12]  Shashi Shekhar,et al.  Spatial Big Data Science , 2017, Springer International Publishing.

[13]  Jiayu Zhou,et al.  WISDOM: Weighted incremental spatio-temporal multi-task learning via tensor decomposition , 2016, 2016 IEEE International Conference on Big Data (Big Data).

[14]  James Bailey,et al.  Accelerating Online CP Decompositions for Higher Order Tensors , 2016, KDD.

[15]  Jiayu Zhou,et al.  GSpartan: a Geospatio-Temporal Multi-task Learning Framework for Multi-location Prediction , 2016, SDM.

[16]  Shashi Shekhar,et al.  Spatiotemporal Data Mining: A Computational Perspective , 2015, ISPRS Int. J. Geo Inf..

[17]  Rose Yu,et al.  Accelerated Online Low Rank Tensor Learning for Multivariate Spatiotemporal Streams , 2015, ICML.

[18]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[19]  Masashi Sugiyama,et al.  Multitask learning meets tensor factorization: task imputation via convex optimization , 2014, NIPS.

[20]  Kai-Wei Chang,et al.  Typed Tensor Decomposition of Knowledge Bases for Relation Extraction , 2014, EMNLP.

[21]  N Sevdalis,et al.  Spatial and temporal analyses to investigate infectious disease transmission within healthcare settings , 2014, Journal of Hospital Infection.

[22]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[23]  Scott McQuade,et al.  Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning , 2013, Computing in Science & Engineering.

[24]  Xu Tan,et al.  Supervised Nonnegative Tensor Factorization with Maximum-Margin Constraint , 2013, AAAI.

[25]  Massimiliano Pontil,et al.  Multilinear Multitask Learning , 2013, ICML.

[26]  Pang-Ning Tan,et al.  Distribution Regularized Regression Framework for Climate Modeling , 2013, SDM.

[27]  Arindam Banerjee,et al.  Climate Multi-model Regression Using Spatial Smoothing , 2013, SDM.

[28]  Anima Anandkumar,et al.  Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..

[29]  Jiayu Zhou,et al.  A multi-task learning formulation for predicting disease progression , 2011, KDD.

[30]  Jiayu Zhou,et al.  Integrating low-rank and group-sparse structures for robust multi-task learning , 2011, KDD.

[31]  Xiaoqin Zhang,et al.  Incremental Tensor Subspace Learning and Its Applications to Foreground Segmentation and Tracking , 2011, International Journal of Computer Vision.

[32]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[33]  Philip S. Yu,et al.  Incremental tensor analysis: Theory and applications , 2008, TKDD.

[34]  Vipin Kumar,et al.  Land cover change detection: a case study , 2008, KDD.

[35]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[36]  Jimeng Sun,et al.  Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.

[37]  Anton Schwaighofer,et al.  Learning Gaussian processes from multiple tasks , 2005, ICML.

[38]  L. Held,et al.  Gaussian Markov Random Fields: Theory And Applications (Monographs on Statistics and Applied Probability) , 2005 .

[39]  Massimiliano Pontil,et al.  Regularized multi--task learning , 2004, KDD.

[40]  Rich Caruana,et al.  Multitask Learning , 1997, Machine Learning.

[41]  Vipin Kumar,et al.  Discovery of climate indices using clustering , 2003, KDD '03.

[42]  Theo Brandsma,et al.  Multisite simulation of daily precipitation and temperature in the Rhine Basin by nearest‐neighbor resampling , 2001 .

[43]  N. Cressie The origins of kriging , 1990 .

[44]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .