Rod‐signal interneurons in the rabbit retina: 1. Rod bipolar cells

The cellular morphology and topographic distribution of the rod bipolar cells in the rabbit retina have been investigated by selective labelling with protein kinase C‐immunohistochemistry (Negishi et al., Neurosci. Lett. 94:247–252, 1988) and by Lucifer Yellow injection of microscopically identified cells in a superfused retinal preparation. The distribution of the rod bipolar cells parallels that of their input neurons, the rod photoreceptors, in that the rod bipolars reach maximum densities of 5,000–7,000 cells/mm2 on the inferior and superior flanks of the visual streak, dropping to slightly lower densities at the peak visual streak. The centre‐to‐periphery density gradient of the rod bipolars is about 2.5:1, and the density ratio of rods to rod bipolars shows little variation across the retina, ranging from 43:1 in superior retina to 58:1 in inferior retina. The dendritic field area of the rod bipolar cells increases from 600 μm2 on the visual streak to 1,200 μm2 in the far‐superior retina, with each point on the retina overlapped by 2.5–3.5 dendritic fields. The axonal field area of the rod bipolar cells increases from about 100 μm2 at the peak visual streak to about 250 μm2 at the retina edge, and the axonal field coverage ranges from 0.55 in the visual streak to about 0.8 in peripheral retina. Although there appear to be gaps in the local array of rod bipolar somata, these areas are covered by the axonal arbours of neighbouring rod bipolar cell.

[1]  H. Kolb,et al.  Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[2]  D. C. Hurst,et al.  Density, soma size, and regional distribution of rabbit retinal ganglion cells , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  H. Young,et al.  Rod‐signal interneurons in the rabbit retina: 2. AII amacrine cells , 1991, The Journal of comparative neurology.

[4]  H. Young,et al.  The retinae of Prototherian mammals possess neuronal types that are characteristic of non-mammalian retinae , 1990, Visual Neuroscience.

[5]  B. Boycott,et al.  Matching populations of amacrine cells in the inner nuclear and ganglion cell layers of the rabbit retina , 1981, The Journal of comparative neurology.

[6]  D. Marshak Peptidergic neurons of the macaque monkey retina. , 1989, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.

[7]  T. Ogden The receptor mosaic of Aotes trivirgatus: Distribution of rods and cones , 1975, The Journal of comparative neurology.

[8]  Rod and cone densities in the Rhesus. , 1974, Investigative ophthalmology.

[9]  H. Kolb,et al.  A17: a broad-field amacrine cell in the rod system of the cat retina. , 1985, Journal of neurophysiology.

[10]  A. Hughes,et al.  Chapter 9 New perspectives in retinal organisation , 1985 .

[11]  J. Provis,et al.  The distribution and size of ganglion cells in the retina of the pigmented rabbit: A quantitative analysis , 1979, The Journal of comparative neurology.

[12]  R. Dacheux,et al.  The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[14]  R. H. Steinberg,et al.  The distribution of rods and cones in the retina of the cat (Felis domesticus) , 1973, The Journal of comparative neurology.

[15]  D. I. Vaney The morphology and topographic distribution of AII amacrine cells in the cat retina , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  A. Hughes,et al.  A schematic eye for the rat , 1979, Vision Research.

[17]  P Sterling,et al.  Rod bipolar array in the cat retina: Pattern of input from rods and GABA‐accumulating amacrine cells , 1987, The Journal of comparative neurology.

[18]  M Tessier-Lavigne,et al.  The effect of photoreceptor coupling and synapse nonlinearity on signal : noise ratio in early visual processing , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  A. H. Bunt Fine structure and radioautography of rabbit photoreceptor cells. , 1978, Investigative ophthalmology & visual science.

[20]  B. Boycott,et al.  Organization of the Primate Retina: Light Microscopy , 1969 .

[21]  J. Kaas,et al.  The sizes and distribution of ganglion cells in the retina of the owl monkey, aotus trivirgatus , 1976, Vision Research.

[22]  A. Hughes The Topography of Vision in Mammals of Contrasting Life Style: Comparative Optics and Retinal Organisation , 1977 .

[23]  B. Boycott,et al.  Topography of horizontal cells in the retina of the domestic cat , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  T. Voigt,et al.  Dopaminergic innervation of A II amacrine cells in mammalian retina , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  R. Masland,et al.  Connections of indoleamine‐accumulating cells in the rabbit retina , 1989, The Journal of comparative neurology.

[26]  E. Strettoi,et al.  Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina , 1990, The Journal of comparative neurology.

[27]  B. Boycott,et al.  Organization of the primate retina: electron microscopy , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[28]  H. Wässle,et al.  The mosaic of nerve cells in the mammalian retina , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  E. Raviola,et al.  Light and electron microscopic observations on the inner plexiform layer of the rabbit retina. , 1967, The American journal of anatomy.

[30]  C. W. Oyster,et al.  Identification and characterization of tyrosine hydroxylase immunoreactive amacrine cells. , 1984, Investigative ophthalmology & visual science.

[31]  S. Schein,et al.  Density profile of blue-sensitive cones along the horizontal meridian of macaque retina. , 1985, Investigative ophthalmology & visual science.

[32]  H. Kolb,et al.  The distribution of photoreceptors, dopaminergic amacrine cells and ganglion cells in the retina of the north american opossum (Didelphis virginiana) , 1985, Vision Research.

[33]  D. I. Vaney,et al.  Chapter 2 The mosaic of amacrine cells in the mammalian retina , 1990 .

[34]  D. I. Vaney,et al.  ‘Coronate’ amacrine cells in the rabbit retina have the ‘starburst’ dendritic morphology , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  Helga Kolb,et al.  Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina , 1983, Vision Research.

[36]  Ursula Greferath,et al.  Rod bipolar cells in the mammalian retina show protein kinase C‐like immunoreactivity , 1990, The Journal of comparative neurology.

[37]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[38]  R. Marc,et al.  Chromatic organization of primate cones. , 1977, Science.

[39]  E. Raviola,et al.  Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits , 1975, The Journal of cell biology.

[40]  P Sterling,et al.  Microcircuitry of bipolar cells in cat retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  I. W. Mclean,et al.  PERIODATE-LYSINE-PARAFORMALDEHYDE FIXATIVE A NEW FIXATIVE FOR IMMUNOELECTRON MICROSCOPY , 1974, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[42]  S. Massey,et al.  Chapter 11 Cell types using glutamate as a neurotransmitter in the vertebrate retina , 1990 .

[43]  B. Boycott,et al.  The connections between bipolar cells and photoreceptors in the retina of the domestic cat , 1973, The Journal of comparative neurology.

[44]  L. Peichl,et al.  Topography of cones and rods in the tree shrew retina , 1989, The Journal of comparative neurology.

[45]  Helga Kolb,et al.  Dopamine-containing amacrine cells of rhesus monkey retina parallel rods in spatial distribution , 1984, Brain Research.

[46]  R. Pourcho Dopaminergic amacrine cells in the cat retina , 1982, Brain Research.

[47]  R. Dacheux,et al.  Excitatory dyad synapse in rabbit retina. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[48]  B. Boycott,et al.  Morphology and topography of on- and off-alpha cells in the cat retina , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[49]  D. Dacey,et al.  Monoamine‐accumulating ganglion cell type of the cat's retina , 1989, The Journal of comparative neurology.

[50]  Robert W. Williams,et al.  Photoreceptor mosaic: Number and distribution of rods and cones in the rhesus monkey retina , 1990, The Journal of comparative neurology.

[51]  R. Masland,et al.  A system of indoleamine-accumulating neurons in the rabbit retina , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  A. Ames,et al.  In Vitro Retina as an Experimental Model of the Central Nervous System , 1981, Journal of neurochemistry.

[53]  A. Hendrickson,et al.  Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina) , 1989, The Journal of comparative neurology.

[54]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[55]  Helga Kolb,et al.  Rod and Cone Pathways in the Inner Plexiform Layer of Cat Retina , 1974, Science.

[56]  R H Masland,et al.  Acetylcholine-synthesizing amacrine cells: identification and selective staining by using radioautography and fluorescent markers , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[57]  Ralph J. Jensen,et al.  Rod pathways in mammalian retinae , 1990, Trends in Neurosciences.

[58]  D. I. Vaney Morphological identification of serotonin-accumulating neurons in the living retina. , 1986, Science.

[59]  A. Mariani Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive , 1984, Nature.

[60]  P. Sterling,et al.  Architecture of rod and cone circuits to the on-beta ganglion cell , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  K. Negishi,et al.  Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas , 1988, Neuroscience Letters.