Transition-Edge Sensors

In recent years, superconducting transition-edge sensors (TES) have emerged as powerful, energyresolving detectors of single photons from the near infrared through gamma rays and sensitive detectors of photon fluxes out to millimeter wavelengths. The TES is a thermal sensor that measures an energy deposition by the increase of resistance of a superconducting film biased within the superconducting-tonormal transition. Small arrays of TES sensors have been demonstrated, and kilopixel arrays are under development. In this chapter, we describe the theory of the superconducting phase transition, derive the TES calorimeter response and noise theory, discuss the state of understanding of excess noise, and describe practical implementation issues including materials choice, pixel design, array fabrication, and cryogenic SQUID multiplexing.

[1]  R. Huebener,et al.  Current-induced intermediate state in thin-film Type-I superconductors: electrical resistance and noise , 1973 .

[2]  J. Ullom,et al.  Noise analysis of gamma-ray TES microcalorimeters with a demonstrated energy resolution of 52 eV at 60 keV , 2003 .

[3]  K. Shirae,et al.  Multichannel DC SQUID System , 1989 .

[4]  G. V. Chester,et al.  The Law of Wiedemann and Franz , 1961 .

[5]  Mary J. Li,et al.  Fabrication of pop-up detector arrays on Si wafers , 1999, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[6]  Enectali Figueroa-Feliciano,et al.  Theory and development of position-sensitive quantum calorimeters , 2001 .

[7]  D. H. Andrews,et al.  Attenuated Superconductors I. For Measuring Infra‐Red Radiation , 1942 .

[8]  S. H. Moseley,et al.  Design and fabrication of a 2D superconducting bolometer array for SAFIRE , 2003, SPIE Astronomical Telescopes + Instrumentation.

[9]  W. B. Tiest,et al.  Performance of X-ray microcalorimeters with an energy resolution below 4.5 eV and 100 μs response time , 2002 .

[10]  Adrian T. Lee,et al.  A Fully Lithographed Voltage - biased Superconducting Spiderweb Bolometer , 1999 .

[11]  Adam L. Woodcraft,et al.  A TES development and test facility at Cardiff, and a solution to the optical saturation problem of superconducting bolometers , 2004, SPIE Astronomical Telescopes + Instrumentation.

[12]  Adrian T. Lee,et al.  Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors , 2001 .

[13]  Kent D. Irwin,et al.  SQUID multiplexers for transition-edge sensors , 2002 .

[14]  Leonzio Rizzo,et al.  N , 1857, Notions d'histoire de la traduction.

[15]  L. Beda Thermal physics , 1994 .

[16]  J. Mather Bolometer noise: nonequilibrium theory. , 1982, Applied optics.

[17]  M. Radparvar A wide dynamic range single-chip SQUID magnetometer , 1994, IEEE Transactions on Applied Superconductivity.

[18]  W. Little Decay of Persistent Currents in Small Superconductors , 1967 .

[19]  E. M. Lifshitz,et al.  Statistical physics. Pt.1 , 1969 .

[20]  C. Kittel Introduction to solid state physics , 1954 .

[21]  J. Clarke,et al.  Composite superconducting transition edge bolometer , 1977 .

[22]  M. W. P. Strandberg,et al.  Excess Noise in Superconducting Bolometers , 1969 .

[23]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[24]  G. J. Coram,et al.  Nonlinear device noise models: Satisfying the thermodynamic requirements , 1999 .

[25]  Mark A. Lindeman,et al.  Microcalorimetry and the transition-edge sensor , 2000 .

[26]  Wolfram Klitzsch [K] , 1962, Dendara. Catalogue des dieux et des offrandes.

[27]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[28]  John M. Martinis,et al.  Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination , 2003 .

[29]  Sebastian Doniach,et al.  Topological Excitations in Two-Dimensional Superconductors , 1979 .

[30]  J. E. Mooij,et al.  Possibility of Vortex-Antivortex Pair Dissociation in Two-Dimensional Superconductors , 1979 .

[31]  Peter A. R. Ade,et al.  SCUBA-2: a large-format submillimeter camera on the James Clerk Maxwell Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[32]  W. Little The Transport of Heat Between Dissimilar Solids at Low Temperatures , 1959 .

[33]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[34]  R. Broom,et al.  Q factor and resonance amplitude of Josephson tunnel junctions , 1977 .

[35]  J. Herder,et al.  Options for an imaging array of micro-calorimeters for X-ray astronomy , 2000 .

[36]  Adrian T. Lee,et al.  Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers , 2000 .

[37]  J. Martinis,et al.  Two-stage integrated SQUID amplifier with series array output , 1993, IEEE Transactions on Applied Superconductivity.

[38]  M. Kiviranta,et al.  DC-SQUID electronics based on the noise cancellation scheme , 1995, IEEE Transactions on Applied Superconductivity.

[39]  K. Irwin,et al.  Dual Transition Edge Sensor Bolometer for Enhanced Dynamic Range , 2004 .

[40]  M. Muck A three channel SQUID-system using a multiplexed readout , 1991 .

[41]  J. Martinis,et al.  A series array of DC SQUIDs , 1991 .

[42]  J. Clarke,et al.  Josephson‐Junction Amplifier , 1971 .

[43]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 2001 .

[44]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[45]  C. Knoedler Phase-slip shot noise contribution to excess noise in superconducting bolometers , 1983 .

[46]  G. Kovacs,et al.  Bulk micromachining of silicon , 1998, Proc. IEEE.

[47]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[48]  P. D. de Korte,et al.  Fabrication and characterization of infrared and sub-mm spiderweb bolometers with low-T/sub c/ superconducting transition edge thermometers , 1999, IEEE Transactions on Applied Superconductivity.

[49]  K. Irwin An application of electrothermal feedback for high resolution cryogenic particle detection , 1995 .

[50]  K. Irwin,et al.  Superconducting multiplexer for arrays of transition edge sensors , 1999 .

[51]  Dominic J. Benford,et al.  Approaching the fundamental noise limit in Mo/Au TES bolometers with transverse normal metal bars , 2004 .

[52]  G. Hilton,et al.  X‐ray detection using a superconducting transition‐edge sensor microcalorimeter with electrothermal feedback , 1996 .

[53]  I. Beloborodov,et al.  Intrinsic excess noise in a transition edge sensor , 2004 .

[54]  W. S. Boyle,et al.  Performance Characteristics of a New Low-Temperature Bolometer , 1959 .

[55]  J. Mather,et al.  Bolometers: ultimate sensitivity, optimization, and amplifier coupling. , 1984, Applied optics.

[56]  H. Tananbaum,et al.  The Constellation X-ray Mission , 1999 .

[57]  Jukka P. Pekola,et al.  Thermal characteristics of silicon nitride membranes at sub-Kelvin temperatures , 1998 .

[58]  D. Gubser,et al.  Thermodynamic properties of superconducting iridium , 1973 .

[59]  P. Richards,et al.  Model for excess noise in voltage-biased superconducting bolometers. , 2000, Applied optics.

[60]  G. W. Fraser On the nature of the superconducting-to-normal transition in transition edge sensors , 2004 .

[61]  K. Irwin Phonon-mediated particle detection using superconducting tungsten transition-edge sensors , 1995 .

[62]  Jan-Willem den Herder,et al.  TES x-ray calorimeter-array for imaging spectroscopy , 2003, SPIE Astronomical Telescopes + Instrumentation.

[63]  John M. Martinis,et al.  Calculation of Tc in a Normal-Superconductor Bilayer Using the Microscopic-Based Usadel Theory , 2000 .

[64]  X. Jing,et al.  Upper critical field of Ti and alpha-TiAl alloys: Evidence of an intrinsic type-II superconductivity in pure Ti , 2000 .

[65]  J. Wheatley,et al.  Superconductivity of Tungsten , 1966 .

[66]  I. Oppenheim Nonlinear nonequilibrium thermodynamics I. Linear and nonlinear fluctuation-dissipation theorems , 1994 .

[67]  John M. Martinis,et al.  Thermal-response time of superconducting transition-edge microcalorimeters , 1998 .

[68]  Arthur Kosowsky The Atacama Cosmology Telescope , 2003 .

[69]  A. Goetz The Possible Use of Superconductivity for Radiometric Purposes , 1939 .

[70]  Kent D. Irwin,et al.  Microwave SQUID multiplexer , 2004 .

[71]  Peter Gluchowski,et al.  F , 1934, The Herodotus Encyclopedia.

[72]  G. Hilton,et al.  Time-division superconducting quantum interference device multiplexer for transition-edge sensors , 2003 .

[73]  W. Webb,et al.  Onset of quantized thermal fluctuations in one-dimensional superconductors , 1970 .

[74]  J. Pekola,et al.  Fluctuation-limited noise in a superconducting transition-edge sensor. , 2003, Physical review letters.

[75]  D. H. Andrews,et al.  The effect of alpha particles on a superconductor , 1949 .

[76]  Oliver Bendel [E] , 1896, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[77]  Richard F. Greene,et al.  On a Theorem of Irreversible Thermodynamics , 1952 .

[78]  Robert E. Higashi,et al.  Monolithic two-dimensional arrays of micromachined microstructures for infrared applications , 1998, Proc. IEEE.

[79]  Alex I. Braginski,et al.  Fundamentals and technology of SQUIDs and SQUID systems , 2004 .

[80]  Sae Woo Nam,et al.  Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors , 1998 .