Buckling of a standing corrugated sandwich plate subjected to body force and terminal load

Abstract The global buckling behavior of a vertically standing corrugated sandwich plate subjected to body force and terminal load is analyzed through an improved first order zig-zag shear deformation theory, with the transverse shear effect of face sheets taken into account. When the face sheets are relatively thick and/or the sandwich plate has relatively large thickness to height ratios, the transverse shear effect of the face sheets affects significantly the critical buckling load. The effect becomes more obvious when body force rather than terminal load is applied on the clamped plates. The influence of geometric parameters on critical buckling parameters is also explored.

[1]  T. Lu,et al.  Free vibration and buckling of foam-filled composite corrugated sandwich plates under thermal loading , 2017 .

[2]  Lin-zhi Wu,et al.  Free Vibration Analysis of Lattice Sandwich Beams under Several Typical Boundary Conditions , 2013 .

[3]  K. Swaminathan,et al.  Thermal analysis of FGM plates – A critical review of various modeling techniques and solution methods , 2017 .

[4]  Young-Wann Kim Effect of partial elastic foundation on free vibration of fluid-filled functionally graded cylindrical shells , 2015 .

[5]  Tian Jian Lu,et al.  Recent advances in hybrid lattice-cored sandwiches for enhanced multifunctional performance , 2017 .

[6]  J. Sussman,et al.  Elastic stability of a simply supported plate under linearly variable compressive stresses. , 1967 .

[7]  Li Ma,et al.  Structural response of all-composite pyramidal truss core sandwich columns in end compression , 2011 .

[8]  G. Hulbert,et al.  Piecewise shear deformation theory and finite element formulation for vibration analysis of laminated composite and sandwich plates in thermal environments , 2017 .

[9]  Jaehong Lee,et al.  A quasi-3D theory for vibration and buckling of functionally graded sandwich beams , 2015 .

[10]  Y. Xing,et al.  Closed-form solutions for free vibration of rectangular FGM thin plates resting on elastic foundation , 2016 .

[11]  K. Magnucki,et al.  Elastic bending and buckling of a steel composite beam with corrugated main core and sandwich faces—Theoretical study , 2016 .

[12]  Fundamental frequency of a standing heavy plate with vertical simply-supported edges , 2009 .

[13]  R. Marangoni,et al.  Natural frequencies and elastic stability of a simply-supported rectangular plate under linearly varying compressive loads , 1971 .

[14]  Buckling of a heavy standing plate with top load , 2010 .

[15]  Bin Han,et al.  Stability and initial post-buckling of a standing sandwich beam under terminal force and self-weight , 2016 .

[16]  Erasmo Carrera,et al.  A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates , 2009 .

[18]  Tun Myint Aung,et al.  Plastic buckling analysis of thick plates using p-Ritz method , 2007 .

[19]  G. Kardomateas An Elasticity Solution for the Global Buckling of Sandwich Beams/Wide Panels With Orthotropic Phases , 2010 .

[20]  M. Bodaghi,et al.  Buckling behavior of standing laminated Mindlin plates subjected to body force and vertical loading , 2011 .

[21]  Vibration of a standing plate with simply supported vertical sides and weakened by a horizontal hinge , 2011 .

[22]  Christopher J. Brown Elastic buckling of plates subjected to distributed tangential loads , 1991 .