Connectivity and its applications in algebraic geometry

[1]  W. Fulton,et al.  A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings , 1979 .

[2]  Oscar Zariski,et al.  On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve , 1929 .

[3]  Kent W. Johnson Immersion and embedding of projective varieties , 1978 .

[4]  P. Deligne Le groupe fondamental du complément d'une courbe plane n'ayant que des points doubles ordinaires est abélien [d'après W. Fulton] , 1980 .

[5]  A. Ogus Local cohomological dimension of algebraic varieties , 1973 .

[6]  G. Maltsiniotis,et al.  Groupe fondamental du complémentaire d'une courbe à points doubles ordinaires , 1974 .

[7]  L. Tráng,et al.  Un théorème de Zariski du type de Lefschetz , 1973 .

[8]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[9]  K. K. Karchyauskas A generalized Lefshets theorem , 1977 .

[10]  A. Holme On the dual of a smooth variety , 1979 .

[11]  A. Sommese Submanifolds of Abelian varieties to Rebecca , 1978 .

[12]  P. Deligne,et al.  Groupes de monodromie en geometrie algebrique , 1972 .

[13]  M. E. Larsen On the topology of complex projective manifolds , 1973 .

[14]  Jean-Pierre Serre Revêtements ramifiés du plan projectif , 1960 .

[15]  Alexander Grothendieck,et al.  Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2) , 1962 .

[16]  G. Faltings Algebraisation of some formal vector bundles , 1979 .

[17]  W. Barth,et al.  On the Homotopy Groups of Complex Projective Algebraic Manifolds. , 1972 .

[18]  D. Cheniot Une démonstration du théorème de Zariski sur les sections hyperplanes d'une hypersurface projective et du théorème de Van Kampen sur le groupe fondamental du complémentaire d'une courbe projective plane , 1973 .

[19]  Helmut A. Hamm Lokale topologische Eigenschaften komplexer Räume , 1971 .

[20]  S. Kleiman,et al.  The Enumerative Theory of Singularities , 1977 .

[21]  D. Mumford Algebraic Geometry I: Complex Projective Varieties , 1981 .

[22]  Robin Hartshorne,et al.  Ample subvarieties of algebraic varieties , 1970 .

[23]  Oscar Zariski,et al.  A Theorem on the Poincare Group of an Algebraic Hypersurface , 1937 .

[24]  M. Oka On the Fundamental Group of the Complement of a Reducible Curve in P2 , 1976 .

[25]  Eugenio Bertini,et al.  Introduzione alla geometria proiettiva degli iperspazi con appendice sulle curve algebriche e loro singolarità , 1907 .

[26]  R. Hartshorne,et al.  Local cohomological dimension in characteristic p , 1977 .

[27]  P. Griffiths,et al.  Algebraic geometry and local differential geometry , 1979 .

[28]  S. Abhyankar Tame coverings and fundamental groups of algebraic varieties: Part I: Branch loci with normal crossings; applications: theorems of Zariski and Picard , 1959 .

[29]  R. Randell ON THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF A SINGULAR PLANE CURVE , 1980 .

[30]  Homotopiegruppen von Hyperflächenschnitten , 1973 .

[31]  David Prill The fundamental group of the complement of an algebraic curve , 1974 .

[32]  R. Hartshorne Varieties of small codimension in projective space , 1974 .

[33]  Alessandro Terracini,et al.  Sulle vk per cui la varietÀ degli sh (h + 1) seganti ha dimensione minore delĽordinario , 1911 .

[34]  Mitsuyoshi Kato Partial poincaré duality for k-regular spaces and complex algebraic sets , 1977 .

[35]  Heisuke Hironaka,et al.  Formal functions and formal embeddings , 1968 .

[36]  G. Faltings Formale Geometrie und homogene Räume , 1981 .

[37]  T. Gaffney,et al.  On the ramification of branched coverings of ℙn , 1980 .

[38]  Wolf Barth,et al.  Transplanting Cohomology Classes in Complex-Projective Space , 1970 .

[39]  W. Fulton On the Fundamental Group of the Complement of a Node Curve , 1980 .