Mathematical modeling of brain glioma growth using modified reaction-diffusion equation on brain MR images

[1]  K. Painter,et al.  Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion. , 2013, Journal of theoretical biology.

[2]  Hervé Delingette,et al.  Tumor growth parameters estimation and source localization from a unique time point: Application to low-grade gliomas , 2013, Comput. Vis. Image Underst..

[3]  Albert Lai,et al.  High order diffusion tensor imaging in human glioblastoma. , 2011, Academic radiology.

[4]  Hervé Delingette,et al.  Image Guided Personalization of Reaction-Diffusion Type Tumor Growth Models Using Modified Anisotropic Eikonal Equations , 2010, IEEE Transactions on Medical Imaging.

[5]  Chunming Li,et al.  Minimization of Region-Scalable Fitting Energy for Image Segmentation , 2008, IEEE Transactions on Image Processing.

[6]  Christos Davatzikos,et al.  An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects , 2008, Journal of mathematical biology.

[7]  Hervé Delingette,et al.  Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation , 2005, IEEE Transactions on Medical Imaging.

[8]  J. Murray,et al.  Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion , 2003, Journal of the Neurological Sciences.

[9]  J. Murray,et al.  A quantitative model for differential motility of gliomas in grey and white matter , 2000, Cell proliferation.

[10]  M. Tovi,et al.  MR imaging in cerebral gliomas analysis of tumour tissue components. , 1993, Acta radiologica. Supplementum.

[11]  G.B. Coleman,et al.  Image segmentation by clustering , 1979, Proceedings of the IEEE.

[12]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.