Ch. 20: Deep Carbon through Deep Time: Data-Driven Insights

Recommended Citation Hazen, Robert; Bromberg, Yana; Downs, Robert; Eleish, Ahmed; Falkowski, Paul; Fox, Peter; Giovannelli, Donato; Hummer, Daniel; Hystad, Grethe; Golden, Joshua; Knoll, Andrew; Li, Congrui; Liu, Chao; Moore, Eli; Morrison, Shaunna; Muscente, A.D.; Prabhu, Anirudh; Ralph, Jolyon; Rucker, Michelle; Runyon, Simone; Warden, Lisa; and Zhong, Hao, "Ch. 20: Deep Carbon through Deep Time: Data-Driven Insights" (2019). School of Earth & Environment Faculty Scholarship. 19. https://rdw.rowan.edu/see_facpub/19

[1]  R. Ernst Large Igneous Provinces , 2014, Encyclopedia of Geology.

[2]  A. Knoll,et al.  The same and not the same: Ore geology, mineralogy and geochemistry of Rodinia assembly versus other supercontinents , 2019, Earth-Science Reviews.

[3]  R. Creaser,et al.  Diamond ages from Victor (Superior Craton): Intra-mantle cycling of volatiles (C, N, S) during supercontinent reorganisation , 2018 .

[4]  Cin-Ty A. Lee,et al.  Deep mantle roots and continental emergence: implications for whole-Earth elemental cycling, long-term climate, and the Cambrian explosion , 2018 .

[5]  M. Choukroun,et al.  Prospects for mineralogy on Titan , 2018 .

[6]  R. Hazen Titan mineralogy: A window on organic mineral evolution , 2018 .

[7]  N. Fierer,et al.  A global atlas of the dominant bacteria found in soil , 2018, Science.

[8]  W. Lieb,et al.  Functional sequencing read annotation for high precision microbiome analysis , 2017, Nucleic acids research.

[9]  Yana Bromberg,et al.  fusionDB: assessing microbial diversity and environmental preferences via functional similarity networks , 2017, Nucleic Acids Res..

[10]  A. Knoll,et al.  Geochemical and mineralogical evidence that Rodinian assembly was unique , 2017, Nature Communications.

[11]  S. Brune,et al.  Potential links between continental rifting, CO2 degassing and climate change through time , 2017, Nature Geoscience.

[12]  Paolo Manghi,et al.  Accessible, curated metagenomic data through ExperimentHub , 2017, Nature Methods.

[13]  M. Koike,et al.  Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada , 2017, Nature.

[14]  J. Baross,et al.  Environmental niches and metabolic diversity in Neoarchean lakes , 2017, Geobiology.

[15]  P. Falkowski,et al.  Metal availability and the expanding network of microbial metabolisms in the Archaean eon , 2017 .

[16]  Joshua J. Golden,et al.  OutlOOks in Earth and PlanEtary MatErials Network analysis of mineralogical systems k , 2017 .

[17]  Peter A. Cawood,et al.  Laurentia-Baltica-Amazonia relations during Rodinia assembly , 2017 .

[18]  C. Vetriani,et al.  Insight into the evolution of microbial metabolism from the deep-branching bacterium, Thermovibrio ammonificans , 2017, eLife.

[19]  Crispin T. S. Little,et al.  Evidence for early life in Earth’s oldest hydrothermal vent precipitates , 2017, Nature.

[20]  R. Hazen,et al.  On the mineralogy of the “Anthropocene Epoch” , 2017 .

[21]  W. Fischer,et al.  Evolution of the global phosphorus cycle , 2016, Nature.

[22]  T. Oberthür,et al.  Osmium isotope compositions of detrital Os-rich alloys from the Rhine River provide evidence for a global late Mesoproterozoic mantle depletion event , 2016 .

[23]  P. Falkowski,et al.  The Role of Microbial Electron Transfer in the Coevolution of the Biosphere and Geosphere. , 2016, Annual review of microbiology.

[24]  Peter A. Cawood,et al.  Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles , 2016 .

[25]  A. Knoll,et al.  A bottom-up perspective on ecosystem change in Mesozoic oceans , 2016, Proceedings of the Royal Society B: Biological Sciences.

[26]  C. Vetriani,et al.  Diversity and Distribution of Prokaryotes within a Shallow-Water Pockmark Field , 2016, Front. Microbiol..

[27]  K. Wrighton,et al.  The bright side of microbial dark matter: lessons learned from the uncultivated majority. , 2016, Current opinion in microbiology.

[28]  Joshua J. Golden,et al.  Carbon mineral ecology: Predicting the undiscovered minerals of carbon , 2016 .

[29]  J. Murphy,et al.  Four-dimensional context of Earth's supercontinents , 2016, Special Publications.

[30]  J. Schimel Microbial ecology: Linking omics to biogeochemistry , 2016, Nature Microbiology.

[31]  Michael B. Meyer,et al.  BUILDING THE MINERAL EVOLUTION DATABASE: IMPLICATIONS FOR FUTURE BIG DATA ANALYSIS , 2016 .

[32]  R. Hazen,et al.  Evolution of Structural Complexity in Boron Minerals , 2016 .

[33]  Erik Kaestner The Dark Side Of The Earth , 2016 .

[34]  Joshua J. Golden,et al.  Earth’s “missing” minerals , 2015 .

[35]  R. Hazen,et al.  Statistical analysis of mineral diversity and distribution: Earth's mineralogy is unique , 2015 .

[36]  Yana Bromberg,et al.  Functional Basis of Microorganism Classification , 2015, PLoS Comput. Biol..

[37]  C. Hawkesworth,et al.  Emergence of modern continental crust about 3 billion years ago , 2015 .

[38]  A. Knoll Paleobiological Perspectives on Early Microbial Evolution. , 2015, Cold Spring Harbor perspectives in biology.

[39]  R. Hazen,et al.  Mineral Species Frequency Distribution Conforms to a Large Number of Rare Events Model: Prediction of Earth’s Missing Minerals , 2015, Mathematical Geosciences.

[40]  I. A. Lundin,et al.  Exhumation of an eclogite terrane as a hot migmatitic nappe, Sveconorwegian orogen , 2015 .

[41]  K. Knittel,et al.  Global dispersion and local diversification of the methane seep microbiome , 2015, Proceedings of the National Academy of Sciences.

[42]  Joshua J. Golden,et al.  MINERAL ECOLOGY: CHANCE AND NECESSITY IN THE MINERAL DIVERSITY OF TERRESTRIAL PLANETS , 2015 .

[43]  Peter A. Cawood,et al.  Detrital zircon geochronology of the Grenville/Llano foreland and basal Sauk Sequence in west Texas, USA , 2014 .

[44]  Peter A. Cawood,et al.  Earth’s middle age , 2014 .

[45]  R. Hazen,et al.  Beryllium mineral evolution , 2014 .

[46]  P. Falkowski,et al.  Evolutionary history of redox metal-binding domains across the tree of life , 2014, Proceedings of the National Academy of Sciences.

[47]  D. Bradley,et al.  THE GLOBAL AGE DISTRIBUTION OF GRANITIC PEGMATITES , 2014 .

[48]  Vikas Nanda,et al.  Function‐based assessment of structural similarity measurements using metal co‐factor orientation , 2014, Proteins.

[49]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[50]  T. Wubet,et al.  Network Analysis Reveals Ecological Links between N-Fixing Bacteria and Wood-Decaying Fungi , 2014, PloS one.

[51]  D. Reed,et al.  Gene-centric approach to integrating environmental genomics and biogeochemical models , 2014, Proceedings of the National Academy of Sciences.

[52]  D. Canfield Oxygen: A Four Billion Year History , 2014 .

[53]  M. Santosh,et al.  The supercontinent cycle: A retrospective essay , 2014 .

[54]  Joshua J. Golden,et al.  Mineral Evolution: Episodic Metallogenesis, the Supercontinent Cycle, and the Coevolving Geosphere and Biosphere , 2014 .

[55]  A. Knoll Paleobiological perspectives on early eukaryotic evolution. , 2014, Cold Spring Harbor perspectives in biology.

[56]  J. Zalasiewicz,et al.  The mineral signature of the Anthropocene in its deep-time context , 2013 .

[57]  Yolanda Gil,et al.  Open data: crediting a culture of cooperation. , 2013, Science.

[58]  Peter A. Cawood,et al.  Not all supercontinents are created equal: Gondwana-Rodinia case study , 2013 .

[59]  M. V. Kranendonk,et al.  Orogenic climax of Earth: the 1.2-1.1 Ga Grenvillian superevent , 2013 .

[60]  Joshua J. Golden,et al.  Rhenium variations in molybdenite (MoS2): Evidence for progressive subsurface oxidation , 2013 .

[61]  Peter A. Cawood,et al.  The continental record and the generation of continental crust , 2013 .

[62]  Linda C. Kah,et al.  Carbon Mineral Evolution , 2013 .

[63]  D. Schrag,et al.  Regulation of atmospheric oxygen during the Proterozoic , 2012 .

[64]  S. D’Hondt,et al.  Nature and Extent of the Deep Biosphere , 2012 .

[65]  L. Greene Protein structure networks. , 2012, Briefings in functional genomics.

[66]  R. M. Prol-Ledesma,et al.  The El Muerto “NYF” Granitic Pegmatite, Oaxaca, Mexico, and Its Striking Enrichment In Allanite-(Ce) and Monazite-(Ce) , 2012 .

[67]  J. Raes,et al.  Microbial interactions: from networks to models , 2012, Nature Reviews Microbiology.

[68]  Joshua J. Golden,et al.  Mercury (Hg) mineral evolution: A mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere , 2012 .

[69]  P. Falkowski,et al.  TrAnsFuSE refines the search for protein function: oxidoreductases. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[70]  B. Schoene,et al.  Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago , 2012, Nature.

[71]  R. Hazen The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet , 2012 .

[72]  Noah Fierer,et al.  Using network analysis to explore co-occurrence patterns in soil microbial communities , 2011, The ISME Journal.

[73]  Peter A. Cawood,et al.  The Great Grenvillian Sedimentation Episode: Record of Supercontinent Rodinia's assembly , 2012 .

[74]  D. Bradley Secular trends in the geologic record and the supercontinent cycle , 2011 .

[75]  A. Knoll,et al.  Needs and opportunities in mineral evolution research , 2011 .

[76]  Peter J. Voice,et al.  Quantifying the Timing and Rate of Crustal Evolution: Global Compilation of Radiometrically Dated Detrital Zircon Grains , 2011, The Journal of Geology.

[77]  J. McLelland,et al.  Review of the Proterozoic evolution of the Grenville Province, its Adirondack outlier, and the Mesoproterozoic inliers of the Appalachians , 2010 .

[78]  Richard C. Aster,et al.  Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth , 2010 .

[79]  William A. Walters,et al.  Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample , 2010, Proceedings of the National Academy of Sciences.

[80]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[81]  S. Pehrsson,et al.  The Geology and Metallogeny of Volcanic-Hosted Massive Sulfide Deposits: Variations through Geologic Time and with Tectonic Setting , 2010 .

[82]  R. Goldfarb,et al.  Secular Variation in Economic Geology , 2010 .

[83]  E. Casamayor,et al.  Global phylogenetic community structure and β-diversity patterns in surface bacterioplankton metacommunities , 2010 .

[84]  Peter A. Cawood,et al.  The generation and evolution of the continental crust , 2010, Journal of the Geological Society.

[85]  J. Ferry,et al.  Mineral Evolution: Mineralogy in the Fourth Dimension , 2010 .

[86]  E. Casamayor,et al.  Global ecological patterns in uncultured Archaea , 2010, The ISME Journal.

[87]  Aboul Ella Hassanien,et al.  Computational Social Network Analysis - Trends, Tools and Research Advances , 2010, Computational Social Network Analysis.

[88]  Peter A. Cawood,et al.  Metallogeny of accretionary orogens - The connection between lithospheric processes and metal endowment , 2009 .

[89]  S. Pisarevsky,et al.  Assembly and Breakup of Rodinia (Some results of IGCP project 440) , 2009 .

[90]  R. Knight,et al.  Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale , 2009, Applied and Environmental Microbiology.

[91]  W. Griffin,et al.  Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra , 2009 .

[92]  T. Rivers Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province—Implications for the evolution of large hot long-duration orogens , 2008 .

[93]  W. Dickinson Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis , 2008 .

[94]  M. Santosh,et al.  The Grenvillian and Pan-African orogens: World's largest orogenies through geologic time, and their implications on the origin of superplume , 2008 .

[95]  I. Campbell,et al.  Formation of supercontinents linked to increases in atmospheric oxygen , 2008 .

[96]  Chris F. Taylor,et al.  The minimum information about a genome sequence (MIGS) specification , 2008, Nature Biotechnology.

[97]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[98]  P. Silver,et al.  Intermittent Plate Tectonics? , 2006, Science.

[99]  Hazen,et al.  Review Paper. Mineral evolution , 2008 .

[100]  T. Als,et al.  Intermittent Plate Tectonics ? , 2008 .

[101]  R. Knight,et al.  Global patterns in bacterial diversity , 2007, Proceedings of the National Academy of Sciences.

[102]  Huaichun Wu,et al.  Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia , 2006 .

[103]  W. Peltier The Phanerozoic Carbon Cycle: CO2 and O2 by Robert A. Berner , 2006 .

[104]  J. Hayes,et al.  The carbon cycle and associated redox processes through time , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[105]  H. Stein,et al.  Molybdenite Re-Os dating constrains gravitational collapse of the Sveconorwegian orogen, SW Scandinavia , 2006 .

[106]  F. Vonblanckenburg The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment , 2006 .

[107]  C. Hawkesworth,et al.  Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon , 2006, Nature.

[108]  R. B. Jackson,et al.  The diversity and biogeography of soil bacterial communities. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[109]  D. Schrag,et al.  Toward a Neoproterozoic composite carbon-isotope record , 2005 .

[110]  Patrick C Phillips,et al.  Network thinking in ecology and evolution. , 2005, Trends in ecology & evolution.

[111]  S. Tringe,et al.  Comparative Metagenomics of Microbial Communities , 2004, Science.

[112]  L. M. Martínez-Torres,et al.  Isotopic, geochemical, and temporal characterization of Proterozoic basement rocks in the Quitovac region, northwestern Sonora, Mexico: Implications for the reconstruction of the southwestern margin of Laurentia , 2004 .

[113]  B. Upton,et al.  Magmatism of the mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting , 2003 .

[114]  Spencer R. Weart,et al.  The Discovery of Global Warming , 2008 .

[115]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[116]  A. J. Kaufman,et al.  δ13C stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: implications for regional lithostratigraphic correlations , 1999 .

[117]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[118]  David J. Hand,et al.  Data Mining: Statistics and More? , 1998 .

[119]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[120]  R. Eby,et al.  Mineralogical and geochemical evolution of micas from miarolitic pegmatites of the anorogenic pikes peak batholith, Colorado , 1995 .

[121]  J. Grotzinger,et al.  Orographic precipitation, erosional unloading, and tectonic style , 1993 .

[122]  S. Eggins,et al.  High field strength and transition element systematics in island arc and back-arc basin basalts: Evidence for multi-phase melt extraction and a depleted mantle wedge , 1993 .

[123]  W. F. Cannon,et al.  Metallogeny of the Midcontinent rift system of North America , 1992 .

[124]  A. Knoll Biological and Biogeochemical Preludes to the Ediacaran Radiation , 1992 .

[125]  P. Kelemen,et al.  High-field-strength element depletions in arc basalts due to mantle–magma interaction , 1990, Nature.

[126]  Sholom M. Weiss,et al.  An Empirical Comparison of Pattern Recognition, Neural Nets, and Machine Learning Classification Methods , 1989, IJCAI.

[127]  John S. Lewis,et al.  Book Review: The chemical evolution of the atmosphere and oceans. By Heinrich D. Holland. Princeton Univ. Press, Princeton, N.J., 1984. pp., pb 24.50, hb 75.00 , 1985 .

[128]  H. Baadsgaard,et al.  Geochronology of the gloserheia pegmatite, Froland, southern Norway , 1984 .

[129]  Barbara G. Beddall,et al.  Wallace, Darwin, and the theory of natural selection , 1968 .