Identical Genomic Organization of Two Hemichordate Hox Clusters
暂无分享,去创建一个
J. Gerhart | M. Kirschner | K. Worley | J. Schmutz | A. Fujiyama | D. Rokhsar | R. Freeman | J. Jenkins | K. Tagawa | T. Humphreys | N. Satoh | H. Saiga | G. Fang | T. Kawashima | C. Lowe | R. Koyanagi | T. Ikuta | Michael Wu
[1] É. Röttinger,et al. Evolutionary crossroads in developmental biology: hemichordates , 2012, Development.
[2] Morgane Thomas-Chollier,et al. A non-tree-based comprehensive study of metazoan Hox and ParaHox genes prompts new insights into their origin and evolution , 2010, BMC Evolutionary Biology.
[3] N. Satoh,et al. Ambulacrarian prototypical Hox and ParaHox gene complements of the indirect-developing hemichordate Balanoglossus simodensis , 2009, Development Genes and Evolution.
[4] B. Swalla,et al. Molecular phylogeny of hemichordata, with updated status of deep-sea enteropneusts. , 2009, Molecular phylogenetics and evolution.
[5] N. Satoh. An aboral‐dorsalization hypothesis for chordate origin , 2008, Genesis.
[6] Nicholas H. Putnam,et al. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. , 2008, Genome research.
[7] A. Smith. Deuterostomes in a twist: the origins of a radical new body plan , 2008, Evolution & development.
[8] Nicholas H. Putnam,et al. The amphioxus genome and the evolution of the chordate karyotype , 2008, Nature.
[9] B. Swalla,et al. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.
[10] Denis Duboule,et al. The rise and fall of Hox gene clusters , 2007, Development.
[11] C. Lowe,et al. Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. , 2006, Integrative and comparative biology.
[12] M. Nonaka,et al. Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus , 2006, Development Genes and Evolution.
[13] David E.K. Ferrier,et al. Hox genes are not always Colinear , 2006, International journal of biological sciences.
[14] F. Delsuc,et al. Tunicates and not cephalochordates are the closest living relatives of vertebrates , 2006, Nature.
[15] Eric H Davidson,et al. Unusual gene order and organization of the sea urchin hox cluster. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.
[16] Joseph C. Pearson,et al. Modulating Hox gene functions during animal body patterning , 2005, Nature Reviews Genetics.
[17] Jordi Garcia-Fernàndez,et al. The genesis and evolution of homeobox gene clusters , 2005, Nature Reviews Genetics.
[18] J. Gerhart,et al. Hemichordates and the origin of chordates. , 2005, Current opinion in genetics & development.
[19] K. Peterson. Isolation of Hox and Parahox genes in the hemichordate Ptychodera flava and the evolution of deuterostome Hox genes. , 2004, Molecular phylogenetics and evolution.
[20] Mark A McPeek,et al. Estimating metazoan divergence times with a molecular clock. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[21] M. Byrne,et al. Evolution of echinoderms may not have required modification of the ancestral deuterostome HOX gene cluster: first report of PG4 and PG5 Hox orthologues in echinoderms , 2003, Development Genes and Evolution.
[22] E. Lander,et al. Anteroposterior Patterning in Hemichordates and the Origins of the Chordate Nervous System , 2003, Cell.
[23] K. Tagawa,et al. Molecular studies of hemichordate development: a key to understanding the evolution of bilateral animals and chordates , 2001, Evolution & development.
[24] P. Holland,et al. The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14 , 2000, Evolution & development.
[25] E. Davidson,et al. Organization of an echinoderm Hox gene cluster. , 1999, Proceedings of the National Academy of Sciences of the United States of America.