Identical Genomic Organization of Two Hemichordate Hox Clusters

[1]  É. Röttinger,et al.  Evolutionary crossroads in developmental biology: hemichordates , 2012, Development.

[2]  Morgane Thomas-Chollier,et al.  A non-tree-based comprehensive study of metazoan Hox and ParaHox genes prompts new insights into their origin and evolution , 2010, BMC Evolutionary Biology.

[3]  N. Satoh,et al.  Ambulacrarian prototypical Hox and ParaHox gene complements of the indirect-developing hemichordate Balanoglossus simodensis , 2009, Development Genes and Evolution.

[4]  B. Swalla,et al.  Molecular phylogeny of hemichordata, with updated status of deep-sea enteropneusts. , 2009, Molecular phylogenetics and evolution.

[5]  N. Satoh An aboral‐dorsalization hypothesis for chordate origin , 2008, Genesis.

[6]  Nicholas H. Putnam,et al.  The amphioxus genome illuminates vertebrate origins and cephalochordate biology. , 2008, Genome research.

[7]  A. Smith Deuterostomes in a twist: the origins of a radical new body plan , 2008, Evolution & development.

[8]  Nicholas H. Putnam,et al.  The amphioxus genome and the evolution of the chordate karyotype , 2008, Nature.

[9]  B. Swalla,et al.  Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  Denis Duboule,et al.  The rise and fall of Hox gene clusters , 2007, Development.

[11]  C. Lowe,et al.  Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. , 2006, Integrative and comparative biology.

[12]  M. Nonaka,et al.  Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus , 2006, Development Genes and Evolution.

[13]  David E.K. Ferrier,et al.  Hox genes are not always Colinear , 2006, International journal of biological sciences.

[14]  F. Delsuc,et al.  Tunicates and not cephalochordates are the closest living relatives of vertebrates , 2006, Nature.

[15]  Eric H Davidson,et al.  Unusual gene order and organization of the sea urchin hox cluster. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[16]  Joseph C. Pearson,et al.  Modulating Hox gene functions during animal body patterning , 2005, Nature Reviews Genetics.

[17]  Jordi Garcia-Fernàndez,et al.  The genesis and evolution of homeobox gene clusters , 2005, Nature Reviews Genetics.

[18]  J. Gerhart,et al.  Hemichordates and the origin of chordates. , 2005, Current opinion in genetics & development.

[19]  K. Peterson Isolation of Hox and Parahox genes in the hemichordate Ptychodera flava and the evolution of deuterostome Hox genes. , 2004, Molecular phylogenetics and evolution.

[20]  Mark A McPeek,et al.  Estimating metazoan divergence times with a molecular clock. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Byrne,et al.  Evolution of echinoderms may not have required modification of the ancestral deuterostome HOX gene cluster: first report of PG4 and PG5 Hox orthologues in echinoderms , 2003, Development Genes and Evolution.

[22]  E. Lander,et al.  Anteroposterior Patterning in Hemichordates and the Origins of the Chordate Nervous System , 2003, Cell.

[23]  K. Tagawa,et al.  Molecular studies of hemichordate development: a key to understanding the evolution of bilateral animals and chordates , 2001, Evolution & development.

[24]  P. Holland,et al.  The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14 , 2000, Evolution & development.

[25]  E. Davidson,et al.  Organization of an echinoderm Hox gene cluster. , 1999, Proceedings of the National Academy of Sciences of the United States of America.