An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system

Abstract In this paper, gallium nitride (GaN) growth chemistry is characterized by two competing reaction pathways. An overview of GaN gas-phase and surface-phase chemistry is used to generate a comprehensive model for epitaxial GaN growth from the commonly used precursors, trimethylgallium ((CH 3 ) 3 Ga) and ammonia (NH 3 ). The role of reactor geometry in controlling the selectivity among the competing reaction pathways is explored in the context of a planetary radial-flow CVD system. Finally, application of a geometrically based uniformity criterion is presented for film uniformity optimization.

[1]  C. Kuo,et al.  Parasitic Reactions between Alkyls and Ammonia in OMVPE , 1995 .

[2]  R. Adomaitis Objects for MWR , 2002 .

[3]  Joan M. Redwing,et al.  GaN films studied by near-field scanning optical microscopy, atomic force microscopy and high resolution X-ray diffraction , 1997 .

[4]  C. Blaauw Preparation and Characterization of Plasma‐Deposited Silicon Nitride , 1984 .

[5]  T. Kuech,et al.  GaN Growth by Metallorganic Vapor Phase Epitaxy A Comparison of Modeling and Experimental Measurements , 1997 .

[6]  D. Stevenson,et al.  Growth Kinetics and Catalytic Effects in the Vapor Phase Epitaxy of Gallium Nitride , 1978 .

[7]  Ronald K. Hanson,et al.  A pyrolysis mechanism for ammonia , 1990 .

[8]  Gerald B. Stringfellow,et al.  Decomposition mechanisms of trimethylgallium , 1990 .

[9]  P. M. Frijlink,et al.  A new versatile, large size MOVPE reactor , 1988 .

[10]  T. J. Mountziaris,et al.  A reaction-transport model of GaAs growth by metalorganic chemical vapor deposition using trimethyl-gallium and tertiary-butyl-arsine , 1993 .

[11]  S. Denbaars,et al.  Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD , 1986 .

[12]  A. Tripathi,et al.  In situ FTIR and surface analysis of the reaction of trimethylgallium and ammonia , 1989 .

[13]  Nitride based high power devices: design and fabrication issues , 1998 .

[14]  D. Neumayer,et al.  Growth of Group III Nitrides. A Review of Precursors and Techniques , 1996 .

[15]  William B. Jensen,et al.  The Lewis Acid-Base Concepts: An Overview , 1979 .

[16]  B. Atakan,et al.  An experimental study of the reactions of trimethylgallium with ammonia and water over a wide temperature range , 1999 .

[17]  John N. Shadid,et al.  Fundamental models of the metalorganic vapor-phase epitaxy of gallium nitride and their use in reactor design , 2000 .

[18]  K. Jensen,et al.  Computational chemistry predictions of reaction processes in organometallic vapor phase epitaxy , 1997 .

[19]  M. Almond,et al.  Organometallic precursors to the formation of GaN by MOCVD: structural characterisation of Me3Ga · NH3 by gas-phase electron diffraction , 1992 .

[20]  S. Qadri,et al.  Superconducting and structure properties of niobium nitride prepared by rf magnetron sputtering , 1985 .

[21]  K. Ohkawa,et al.  GaN-MOVPE growth and its microscopic chemistry of gaseous phase by computational thermodynamic analysis , 2002 .

[22]  V. S. Ban,et al.  Mass Spectrometric Studies of Vapor‐Phase Crystal Growth II . , 1971 .

[23]  T. Kuech,et al.  Model development of GaN MOVPE growth chemistry for reactor design , 2000 .

[24]  S. Gates,et al.  Hydrogen desorption and ammonia adsorption on polycrystalline GaN surfaces , 1995 .

[25]  T. Kuech,et al.  Transport and Reaction Behaviors of Precursors during Metalorganic Vapor Phase Epitaxy of Gallium Nitride , 1999 .

[26]  O. Briot,et al.  Competitive adsorption effects in the metalorganic vapor phase epitaxy of GaN , 1997 .

[27]  F. Maury,et al.  Various chemical mechanisms for the crystal growth of III–V semiconductors using coordination compounds as starting material in the MOCVD process , 1981 .

[28]  Klavs F. Jensen,et al.  A reaction-transport model for AlGaN MOVPE growth , 1998 .

[29]  K. Hawboldt,et al.  Ammonia Pyrolysis and Oxidation in the Claus Furnace , 2001 .

[30]  B. Beaumont,et al.  Nitrogen precursors in metalorganic vapor phase epitaxy of (Al,Ga)N , 1995 .

[31]  T. Kuech,et al.  Gas-phase chemistry of metalorganic and nitrogen-bearing compounds , 2000 .

[32]  Raymond A. Adomaitis Identification of a deposition rate profile subspace corresponding to spatially-uniform films in planetary CVD reactors: a new criterion for uniformity control , 2005, Comput. Chem. Eng..

[33]  Koh Matsumoto,et al.  Quantum Chemical Studies of Gas Phase Reactions between TMA, TMG, TMI and NH3 , 1999 .

[34]  M. T. Emerson,et al.  Prediction of Stabilities of Trialkylgallium Addition Compounds , 1965 .

[35]  Thomas F. Kuech,et al.  High temperature adduct formation of trimethylgallium and ammonia , 1996 .

[36]  Michael Heuken,et al.  High temperature CVD systems to grow GaN or SiC based structures , 1999 .

[37]  M. G. Jacko,et al.  THE PYROLYSIS OF TRIMETHYL GALLIUM , 1963 .

[38]  S. Sriram,et al.  SiC and GaN wide bandgap semiconductor materials and devices , 1999 .

[39]  Constantinos Theodoropoulos,et al.  Design of gas inlets for the growth of gallium nitride by metalorganic vapor phase epitaxy , 2000 .