Implementation of computation process in a bayesian network on the example of unit operating costs determination

In technical systems understood in terms of Agile Systems, the important elements are information flows between all phases of an object existence. Among these information streams computation processes play an important role and can be done automatically and also in a natural way should include consideration of uncertainty. This article presents a model of such a process implemented in a Bayesian network technology. The model allows the prediction of the unit costs of operation of a combine harvester based on the monitoring of dependent variables. The values of the decision variables representing the parameters of the machine’s operation and the intensity and the conditions for its operation, are known to an accuracy, which is defined by a probability distribution. The study shows, using inference mechanisms built into the network, how cost simulation studies of various situational options can be carried out.

[1]  H. Hołaj,et al.  Modelowanie problemów decyzyjnych w integrowanym systemie produkcji rolniczej , 2011 .

[2]  P. Maksym,et al.  Zastosowanie sieci bayesowskich do modelowania rolniczego procesu produkcyjnego , 2006 .

[3]  P. Maksym Podstawowe zasady modelowania procesu produkcji rolniczej , 2011 .

[4]  A. Kusz,et al.  Modelowanie procesu eksploatacji obiektów technicznych za pomocą dynamicznych sieci bayesowskich , 2006 .

[5]  A. Kusz,et al.  Modelowanie niezawodności złożonych systemów bioagrotechnicznych , 2010 .

[6]  Judea Pearl,et al.  Fusion, Propagation, and Structuring in Belief Networks , 1986, Artif. Intell..

[7]  Jadwiga Szafraniec Koszty eksploatacji maszyn i urządzeń w procesie decyzyjnym , 1992 .

[8]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[9]  A. W. Marciniak,et al.  Operational reliability model of the production line , 2011 .

[10]  A. W. Marciniak,et al.  Application of the operational reliability model to the risk analysis in medical device production , 2011 .

[11]  Marek J. Druzdzel,et al.  Learning Bayesian network parameters from small data sets: application of Noisy-OR gates , 2001, Int. J. Approx. Reason..

[12]  Joseph Y. Halpern Reasoning about uncertainty , 2003 .

[13]  Francisco J. Samaniego Accelerated Life Testing and Experts' Opinions in Reliability , 1990 .

[14]  S. Piasecki Eksploatacyjna ocena wyrobów na przykładzie maszyn roboczych , 2001 .

[15]  A. Kusz,et al.  Bayesian networks as knowledge representation system in domain of reliability engineering , 2011 .

[16]  Jose Emmanuel Ramirez-Marquez,et al.  A generic method for estimating system reliability using Bayesian networks , 2009, Reliab. Eng. Syst. Saf..

[17]  A W Marciniak Projektowanie systemu reprezentacji wiedzy o rolniczym procesie produkcyjnym , 2005 .

[18]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[19]  Ayeley P. Tchangani Reliability analysis using Bayesian networks , 2001 .

[20]  Marek Młyńczak,et al.  Metodyka badań eksploatacyjnych obiektów mechanicznych , 2012 .

[22]  Harry Chen,et al.  ITTALKS: A Case Study in the Semantic Web and DAML , 2001, SWWS.

[23]  大西 仁,et al.  Pearl, J. (1988, second printing 1991). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan-Kaufmann. , 1994 .

[24]  Richard E. Barlow,et al.  Using Influence Diagrams. , 1987 .

[25]  A. Kusz,et al.  The representation of actions in probabilistic networks , 2013 .

[26]  A. Kusz,et al.  Modelowanie syntezy działań ochronnych w rolniczym procesie produkcyjnym , 2011 .

[27]  C. Su,et al.  Reliability assessment for wind turbines considering the influence of wind speed using bayesian network , 2014 .