The Galerkin scheme for Lavrentiev’sm-times iterated method to solve linear accretive Volterra integral equations of the first kind

In this paper, for the numerical solution of linear accretive Volterra integral equations of the first kind in Hilbert spaces we consider the Galerkin scheme for Lavrentiev’sm-times iterated method, i.e., for each parameter choice for Lavrentiev’sm-times iterated method the arisingm stabilized equations are discretized by the Galerkin scheme. An associated discrepancy principle as parameter choice strategy for this finite-dimensional version of Lavrentiev’sm-times iterated method is proposed, and corresponding convergence results are provided.

[1]  J. Baumeister Stable solution of inverse problems , 1987 .

[2]  Gennadi Vainikko,et al.  Error bounds of discretization methods for boundary integral equations with noisy data , 1996 .

[3]  M. Krasnosel’skiǐ,et al.  Integral operators in spaces of summable functions , 1975 .

[4]  R. Plato On the discrepancy principle for iterative and parametric methods to solve linear ill-posed equations , 1996 .

[5]  P. P. B. Eggermont On Galerkin methods for Abel-type integral equations , 1988 .

[6]  J. Nohel,et al.  Frequency domain methods for Volterra equations , 1976 .

[7]  Robert Plato,et al.  On the regularization of projection methods for solving III-posed problems , 1990 .

[8]  Hiroki Tanabe,et al.  Equations of evolution , 1979 .

[9]  R. Plato Lavrentiev’s Method for Linear Volterra Integral Equations of the First Kind, with Applications to the Non-Destructive Testing of Optical-Fibre Preforms , 1997 .

[10]  R. Anderssen,et al.  Determination of stress profiles in optical-fibre preforms , 1982 .

[11]  A. Louis Inverse und schlecht gestellte Probleme , 1989 .

[12]  Sergio Vessella,et al.  Abel Integral Equations , 1990 .

[13]  R. Kress Linear Integral Equations , 1989 .

[14]  L. Wolfersdorf,et al.  On Approximate Computation of the Values of the Normal Derivative of Solutions to Linear Partial Differential Equations of Second Order with Application to Abel's Integral Equation , 1986 .

[15]  C. Groetsch,et al.  Regularized Ritz approximations for Fredholm equations of the first kind , 1985 .

[16]  Frank Natterer,et al.  Regularisierung schlecht gestellter Probleme durch Projektionsverfahren , 1977 .

[17]  M. Hanke Conjugate gradient type methods for ill-posed problems , 1995 .

[18]  R. Plato,et al.  On pseudo-optimal parameter choices and stopping rules for regularization methods in Banach spaces , 1996 .

[19]  R. Plato Resolvent Estimates for Abel Integral Operators and the Regularization of Associated First Kind Integral Equations , 1997 .

[20]  Andreas Neubauer,et al.  An improved version of Marti’s method for solving ill-posed linear integral equations , 1985 .