Concept study for a high-efficiency nanowire based thermoelectric

Materials capable of highly efficient, direct thermal-to-electric energy conversion would have substantial economic potential. Theory predicts that thermoelectric efficiencies approaching the Carnot limit can be achieved at low temperatures in one-dimensional conductors that contain an energy filter such as a double-barrier resonant tunnelling structure. The recent advances in growth techniques suggest that such devices can now be realized in heterostructured, semiconductor nanowires. Here we propose specific structural parameters for InAs/InP nanowires that may allow the experimental observation of near-Carnot efficient thermoelectric energy conversion in a single nanowire at low temperature.

[1]  Lars Samuelson,et al.  Solid-phase diffusion mechanism for GaAs nanowire growth , 2004, Microscopy and Microanalysis.

[2]  Lars Samuelson,et al.  Nanowire resonant tunneling diodes , 2002 .

[3]  H Linke,et al.  Reversible quantum brownian heat engines for electrons. , 2002, Physical review letters.

[4]  J. H. Davies,et al.  The physics of low-dimensional semiconductors , 1997 .

[5]  Yu-Ming Lin,et al.  Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires , 2000 .

[6]  T. E. Humphrey,et al.  Electronic efficiency in nanostructured thermionic and thermoelectric devices , 2005 .

[7]  C. Gould,et al.  Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy , 2000 .

[8]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[9]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[10]  Lars Samuelson,et al.  Few-Electron Quantum Dots in Nanowires , 2004 .

[11]  Kang L. Wang,et al.  Thermal conductivity of symmetrically strained Si/Ge superlattices , 2000 .

[12]  Lars Samuelson,et al.  Single-electron transistors in heterostructure nanowires. , 2003 .

[13]  R. Venkatasubramanian Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures , 2000 .

[14]  K. Brennan,et al.  Theory of resonant tunneling in a variably spaced multiquantum well structure: An Airy function approach , 1987 .

[15]  Yu-Ming Lin,et al.  Thermoelectric properties of superlattice nanowires , 2003 .

[16]  M. Cardona,et al.  THERMAL-CONDUCTIVITY MEASUREMENTS OF GAAS/ALAS SUPERLATTICES USING A PICOSECOND OPTICAL PUMP-AND-PROBE TECHNIQUE , 1999 .

[17]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[18]  T. Honda,et al.  Shell Filling and Spin Effects in a Few Electron Quantum Dot. , 1996, Physical review letters.

[19]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[20]  Freeman,et al.  Hot electrons and energy transport in metals at millikelvin temperatures. , 1985, Physical review letters.

[21]  Lars Samuelson,et al.  Epitaxial III-V nanowires on silicon , 2004 .

[22]  Ali Shakouri,et al.  Electronic and thermoelectric transport in semiconductor and metallic superlattices , 2004 .

[23]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[24]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.