A Miniaturized 70-GHz Broadband Amplifier in 0.13-$\mu {\hbox{m}}$ CMOS Technology

A 70-GHz broadband amplifier is realized in a 0.13- mum CMOS technology. By using five cascaded common- source stages with the proposed asymmetric transformer peaking technique, the measured bandwidth and gain can reach 70.6 GHz and 10.3 dB under a power consumption (PDC) of 79.5 mW. Within the circuit bandwidth, the maximum input and output reflection coefficients are -6.1 and -10.8 dB, respectively. The group delay variation is plusmn 12.0 ps, and the output 1-dB compression point is 0.2 dBm at 5 GHz. With the miniaturized transformer design, the occupied core area of the circuit is only ~ 0.05 mm2 . This amplifier demonstrates a gain-bandwidth product of 231 GHz and a GBW/PDC up to 2.9 GHz/mW.

[1]  Liang-Hung Lu,et al.  40-Gb / s High-Gain Distributed Amplifiers With Cascaded Gain Stages in 0 . 18-m CMOS , 2009 .

[2]  M. Glenn,et al.  5-100 GHz InP coplanar waveguide MMIC distributed amplifier , 1990 .

[3]  N. Hara,et al.  An over 110-GHz InP HEMT flip-chip distributed baseband amplifier with inverted microstrip line structure for optical transmission systems , 2002, 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu.

[4]  Shawn S. H. Hsu,et al.  A 70-GHz transformer-peaking broadband amplifier in 0.13-μm CMOS Technology , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[5]  Liang-Hung Lu,et al.  A 9.5-dB 50-GHz Matrix Distributed Amplifier in 0.18-/spl mu/m CMOS , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[6]  Liang-Hung Lu,et al.  40-Gb/s High-Gain Distributed Amplifiers With Cascaded Gain Stages in 0.18-$\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[7]  Stephen P. Boyd,et al.  Bandwidth extension in CMOS with optimized on-chip inductors , 2000, IEEE Journal of Solid-State Circuits.

[8]  H. Shigematsu,et al.  A 49-GHz preamplifier with a transimpedance gain of 52 dBΩ using InP HEMTs , 2001, IEEE J. Solid State Circuits.

[9]  Liang-Hung Lu,et al.  A 45.6-GHz matrix distributed amplifier in 0.18-nm CMOS , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[10]  D.J. Allstot,et al.  Bandwidth Extension Techniques for CMOS Amplifiers , 2006, IEEE Journal of Solid-State Circuits.

[11]  Jun-De Jin,et al.  A 40-Gb/s Transimpedance Amplifier in 0.18-$\mu$m CMOS Technology , 2008, IEEE Journal of Solid-State Circuits.

[12]  A. Leven,et al.  SiGe differential transimpedance amplifier with 50 GHz bandwidth , 2002, 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu.

[13]  S. Yokokawa,et al.  An over 110-GHz InP HEMT flip-chip distributed baseband amplifier with inverted microstrip line structure for optical transmission systems , 2002 .

[14]  Behzad Razavi,et al.  40-Gb/s amplifier and ESD protection circuit in 0.18-/spl mu/m CMOS technology , 2004, IEEE Journal of Solid-State Circuits.

[15]  Huei Wang,et al.  A 70GHz cascaded multi-stage distributed amplifier in 90nm CMOS technology , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[16]  T. F. Meister,et al.  40 Gbit/s transimpedance amplifier in SiGe bipolar technology for the receiver in optical-fibre TDM links , 1998 .

[17]  Kambiz Moez,et al.  A 10dB 44GHz Loss-Compensated CMOS Distributed Amplifier , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.