Mesh Compression with Random Accessibility

Previous mesh compression techniques provide nice properties such as high compression ratio, progressive decoding, and out-of-core processing. However, none of them supports therandom accessibilityin decoding, which enables the details of any specific part to be available without decoding other parts. This paper introduces the random accessibility to mesh compression and proposes an effective framework for the property. The key component of the framework is awire-net meshconstructed from a chartification of the given mesh. Experimental results show that random accessibility can be achieved with competent compression ratio, only a little worse than single-rate and comparable to progressive encoding.

[1]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[2]  Gabriel Taubin,et al.  Progressive forest split compression , 1998, SIGGRAPH.

[3]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[4]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[5]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[6]  David Levin,et al.  Progressive Compression of Arbitrary Triangular Meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[7]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[8]  Renato Pajarola,et al.  Compressed Progressive Meshes , 2000, IEEE Trans. Vis. Comput. Graph..

[9]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[10]  Martin Isenburg,et al.  Face fixer: compressing polygon meshes with properties , 2000, SIGGRAPH.

[11]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[12]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[13]  Olivier Devillers,et al.  Geometric compression for interactive transmission , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[14]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[15]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[16]  Insung Ihm,et al.  3D RGB image compression for interactive applications , 2001, TOGS.

[17]  Pierre Alliez,et al.  Valence‐Driven Connectivity Encoding for 3D Meshes , 2001, Comput. Graph. Forum.

[18]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[19]  Pierre Alliez,et al.  Near-Optimal Connectivity Encoding of 2-Manifold Polygon Meshes , 2002, Graph. Model..

[20]  M. Isenburg Compressing Polygon Mesh Connectivity with Degree Duality Prediction , 2002, Graphics Interface.

[21]  Pierre Alliez,et al.  Angle‐Analyzer: A Triangle‐Quad Mesh Codec , 2002, Comput. Graph. Forum.

[22]  Olivier Devillers,et al.  Progressive lossless compression of arbitrary simplicial complexes , 2002, SIGGRAPH.

[23]  Martin Isenburg,et al.  Compressing polygon mesh geometry with parallelogram prediction , 2002, IEEE Visualization, 2002. VIS 2002..

[24]  Sivan Toledo,et al.  High-Pass Quantization for Mesh Encoding , 2003, Symposium on Geometry Processing.

[25]  Pedro V. Sander,et al.  Multi-Chart Geometry Images , 2003, Symposium on Geometry Processing.

[26]  Marco Attene,et al.  SwingWrapper: Retiling triangle meshes for better edgebreaker compression , 2003, TOGS.