Fast Ray-Tracing of Rectilinear Volume Data Using Distance Transforms

The paper discusses and experimentally compares distance based acceleration algorithms for ray tracing of volumetric data with an emphasis on the Chessboard Distance (CD) voxel traversal. The acceleration of this class of algorithms is achieved by skipping empty macro regions, which are defined for each background voxel of the volume. Background voxels are labeled in a preprocessing phase by a value, defining the macro region size, which is equal to the voxel distance to the nearest foreground voxel. The CD algorithm exploits the chessboard distance and defines the ray as a nonuniform sequence of samples positioned at voxel faces. This feature assures that no foreground voxels are missed during the scene traversal. Further, due to parallelepipedal shape of the macro region, it supports accelerated visualization of cubic, regular, and rectilinear grids. The CD algorithm is suitable for all modifications of the ray tracing/ray casting techniques being used in volume visualization and volume graphics. However, when used for rendering based on local surface interpolation, it also enables fast search of intersections between rays and the interpolated surface, further improving speed of the process.

[1]  Arie E. Kaufman,et al.  Alias-Free Voxelization of Geometric Objects , 1999, IEEE Trans. Vis. Comput. Graph..

[2]  John Amanatides,et al.  A Fast Voxel Traversal Algorithm for Ray Tracing , 1987, Eurographics.

[3]  Roni Yagel,et al.  Accelerating volume animation by space-leaping , 1993, Proceedings Visualization '93.

[4]  Ivan Bajla,et al.  Nonlinear filtering of magnetic resonance tomograms by geometry-driven diffusion , 1998, Machine Vision and Applications.

[5]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[6]  John R. Wallace,et al.  A Ray tracing algorithm for progressive radiosity , 1989, SIGGRAPH '89.

[7]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[8]  I. Holländer,et al.  An Interactive Tool for Manipulation and Presentation of 3D Tomographic Data , 1993 .

[9]  Takayuki Tanaka,et al.  ARTS: Accelerated Ray-Tracing System , 1986, IEEE Computer Graphics and Applications.

[10]  Klaus Mueller,et al.  Evaluation and Design of Filters Using a Taylor Series Expansion , 1997, IEEE Trans. Vis. Comput. Graph..

[11]  Arie E. Kaufman,et al.  Volumetric ray tracing , 1994, VVS '94.

[12]  Karl Heinz Höhne,et al.  High quality rendering of attributed volume data , 1998 .

[13]  Olivier Devillers,et al.  The Macro-Regions: An Efficient Space Subdivision Structure for Ray Tracing , 1989, Eurographics.

[14]  Max A. Viergever,et al.  Acceleration of ray-casting using 3-D distance transforms , 1992, Other Conferences.

[15]  Arie E. Kaufman,et al.  Efficient algorithms for 3D scan-conversion of parametric curves, surfaces, and volumes , 1987, SIGGRAPH.

[16]  Philip J. Willis,et al.  The SMART navigation of a ray through an oct-tree , 1991, Comput. Graph..

[17]  Miloš Šrámek Fast ray-tracing of rectilinear volume data , 1996 .

[18]  Arie E. Kaufman,et al.  Template‐Based Volume Viewing , 1992, Comput. Graph. Forum.

[19]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[20]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[21]  Ingrid Carlbom,et al.  Optimal filter design for volume reconstruction and visualization , 1993, Proceedings Visualization '93.

[22]  Milos Srámek,et al.  Fast surface rendering from raster data by voxel traversal using chessboard distance , 1994, Proceedings Visualization '94.

[23]  Daniel Cohen-Or,et al.  Volume graphics , 1993, Computer.

[24]  Arie E. Kaufman,et al.  Discrete ray tracing , 1992, IEEE Computer Graphics and Applications.

[25]  Arie E. Kaufman,et al.  Volume-sampled 3D modeling , 1994, IEEE Computer Graphics and Applications.

[26]  Thomas Malzbender,et al.  Frequency Analysis of Gradient Estimators in Volume Rendering , 1996, IEEE Trans. Vis. Comput. Graph..

[27]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.