Fixed exploitation rate strategies for coping with effects of climate change

Survival rates and carrying capacities for larval and juvenile fishes may be strongly affected by long-term, unpredictable climatic fluctuations. When climate impacts produce strongly autocorrelated interannual variations in recruitment, harvesting a constant fraction of the stock each year allows the spawning stock to track such variations. Dynamic programming analysis indicates that this tracking effect is likely to produce long-term harvests that are very close (within 15%) to the theoretical optimum that could be achieved if all future climatic variations were known in advance. Fixed harvest rate strategies are likely to degrade performance more than 10% only when there is little interannual correlation in environmental effects or when there is a large, abrupt climate change that can be predicted well in advance if it is going to increase carrying capacity, or detected immediately if it causes a decrease in capacity. This finding implies that it may be more cost effective to invest in research on how to implement fixed harvest rate strategies than to invest in research on explaining and predicting climatic effects. Successful implementation may require a combination of improved stock size assessments, and stringent regulatory measures to substantially restrict the proportion of fish at risk to fishing each year. Resume : Les taux de survie des larves et des juveniles de poissons et la capacite portante de leurs habitats peuvent etre profondement affectes par des fluctuations climatiques imprevisibles et a long terme. Quand l'impact du climat produit des variations interannuelles du recrutement qui sont fortement autocorrelees, le prelevement d'une fraction constante de la population chaque annee permet au stock reproducteur de s'aligner sur ces variations. L'analyse par programmation dynamique indique que cet effet d'alignement doit vraisemblablement produire a long terme des prelevements qui sont tres proches (en-deca de 15%) de l'optimum theorique qui pourrait etre atteint si on connaissait d'avance toutes les variations climatiques futures. Les strategies du taux fixe de prelevement ne reduisent la production de plus de 10% que lorsqu'il y a peu de correlation interannuelle dans les effets environnementaux ou que se produit une modification climatique importante et brutale que l'on peut prevoir longtemps a l'avance si elle doit accroitre la capacite portante, ou que l'on peut detecter immediatement si elle cause une baisse de la capacite. Cette decouverte permet de penser qu'il serait plus rentable d'investir dans la recherche sur les facons de mettre en oeuvre des strategies de taux de prelevement fixe plutot que d'investir dans la recherche sur l'explication et la prediction des effets climatiques. Pour mettre en oeuvre avec succes de telles strategies, il peut etre necessaire de combiner des evaluations plus fiables de la taille des stocks et des mesures de reglementation stricte de facon a restreindre substantiellement la proportion de poissons susceptibles d'etre peches chaque annee. (Traduit par la Redaction)

[1]  R. Beverton,et al.  On the dynamics of exploited fish populations , 1993, Reviews in Fish Biology and Fisheries.

[2]  C. Pfister,et al.  Harvesting Red Sea Urchins: Recent Effects and Future Predictions , 1996 .

[3]  R. Rowley Marine reserves in fisheries management , 1994 .

[4]  Jon T. Schnute,et al.  A General Framework for Developing Sequential Fisheries Models , 1994 .

[5]  P. Mace,et al.  Relationships between Common Biological Reference Points Used as Thresholds and Targets of Fisheries Management Strategies , 1994 .

[6]  A. Rosenberg,et al.  In search of thresholds for recruitment overfishing , 1994 .

[7]  J. Dugan,et al.  Applications of marine refugia to coastal fisheries management , 1993 .

[8]  R. Beamish,et al.  Pacific salmon production trends in relation to climate , 1993 .

[9]  R. Beverton,et al.  On the Dynamics of Exploited Fish Populations , 1959, Fish & Fisheries Series.

[10]  K. Mann,et al.  Physical oceanography, food chains, and fish stocks: a review , 1993 .

[11]  A. Laurec,et al.  Management under uncertainty: defining strategies for reducing overexploitation , 1992 .

[12]  A. Parma OPTIMAL HARVESTING OF FISH POPULATIONS WITH NON-STATIONARY STOCK-RECRUITMENT RELATIONSHIPS , 1990 .

[13]  Tom Polacheck,et al.  YEAR AROUND CLOSED AREAS AS A MANAGEMENT TOOL , 1990 .

[14]  C. Walters Value of Short-Term Forecasts of Recruitment Variation for Harvest Management , 1989 .

[15]  Carl J. Walters,et al.  Is Research on Environmental Factors Useful to Fisheries Management , 1988 .

[16]  C. Walters,et al.  Alternative Harvest Strategies for Pacific Herring (Clupea harengus pallasi) , 1988 .

[17]  R. Hannesson Fixed or Variable Catch Quotas? The Importance of Population Dynamics and Stock Dependent Costs , 1988, Marine Resource Economics.

[18]  C. Clark,et al.  Dynamic Modeling in Behavioral Ecology , 2019 .

[19]  R. Deriso Optimal F0.1 criteria and their relationship to maximum sustainable yield , 1987 .

[20]  John Shepherd,et al.  An Alternative Perspective on Recruitment Overfishing and Biological Reference Points , 1987 .

[21]  C. Walters,et al.  ADAPTIVE MANAGEMENT OF HARVEST RATES IN THE PRESENCE OF A RISK AVERSE UTILITY FUNCTION , 1987 .

[22]  Carl J. Walters,et al.  Adaptive Management of Renewable Resources , 1986 .

[23]  Ray Hilborn,et al.  Optimal Stock Size and Harvest Rate in Multistage Life History Models , 1986 .

[24]  J. Schnute A General Theory for Analysis of Catch and Effort Data , 1985 .

[25]  Risk Adverse Harvesting Strategies , 1985 .

[26]  B S Weir Statistical analysis of molecular genetic data. , 1985, IMA journal of mathematics applied in medicine and biology.

[27]  J. Beddington,et al.  The Relationship between Catch Rates and Abundance in Fisheries , 1984 .

[28]  R. Deriso Harvesting Strategies and Parameter Estimation for an Age-Structured Model , 1980 .

[29]  Harvesting a protected population in an uncertain environment , 1979 .