Operational advantages provided by nonclassical teleportation

The standard benchmark for teleportation is the average fidelity of teleportation and according to this benchmark not all states are useful for teleportation. It was recently shown however that all entangled states lead to non-classical teleportation, with there being no classical scheme able to reproduce the states teleported to Bob. Here we study the operational significance of this result. On the one hand we demonstrate that every entangled state is useful for teleportation if a generalization of the average fidelity of teleportation is considered which concerns teleporting quantum correlations. On the other hand, we show the strength of a particular entangled state and entangled measurement for teleportation -- as quantified by the robustness of teleportation -- precisely characterizes their ability to offer an advantage in the task of subchannel discrimination with side information. This connection allows us to prove that every entangled state outperforms all separable states when acting as a quantum memory in this discrimination task. Finally, within the context of a resource theory of teleportation, we show that the two operational tasks considered provide complete sets of monotones for two partial orders based upon the notion of teleportation simulation, one classical, and one quantum.

[1]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[2]  Joonwoo Bae,et al.  More Entanglement Implies Higher Performance in Channel Discrimination Tasks. , 2018, Physical review letters.

[3]  R. Spekkens,et al.  The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.

[4]  S'ebastien Designolle,et al.  Incompatibility robustness of quantum measurements: a unified framework , 2019, New Journal of Physics.

[5]  Paul Skrzypczyk,et al.  Robustness of Measurement, Discrimination Games, and Accessible Information. , 2018, Physical review letters.

[6]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[7]  John T. Lewis,et al.  An operational approach to quantum probability , 1970 .

[8]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[9]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[10]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[11]  Che-Ming Li,et al.  Quantum teleportation between remote atomic-ensemble quantum memories , 2012, Proceedings of the National Academy of Sciences.

[12]  M. Horodecki,et al.  Reversible transformations from pure to mixed states and the unique measure of information , 2002, quant-ph/0212019.

[13]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[14]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[15]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[16]  John Preskill,et al.  Quantum information and precision measurement , 1999, quant-ph/9904021.

[17]  Rodrigo Gallego,et al.  The Resource Theory of Steering , 2014, TQC.

[18]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[19]  A. Acín Statistical distinguishability between unitary operations. , 2001, Physical review letters.

[20]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[21]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[22]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .

[23]  Mark Howard,et al.  Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing. , 2016, Physical review letters.

[24]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[25]  J. I. D. Vicente On nonlocality as a resource theory and nonlocality measures , 2014, 1401.6941.

[26]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[27]  Vaidman Teleportation of quantum states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[28]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[29]  Paul Skrzypczyk,et al.  All Entangled States can Demonstrate Nonclassical Teleportation. , 2016, Physical review letters.

[30]  Paul Skrzypczyk,et al.  Methods to estimate entanglement in teleportation experiments , 2018, Physical Review A.

[31]  Paul Skrzypczyk,et al.  Quantifying Measurement Incompatibility of Mutually Unbiased Bases. , 2018, Physical review letters.

[32]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[33]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[34]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[35]  Martin B. Plenio,et al.  Quantifying Operations with an Application to Coherence. , 2018, Physical review letters.

[36]  S. Popescu,et al.  BOUND ENTANGLEMENT AND TELEPORTATION , 1998, quant-ph/9807069.

[37]  Popescu,et al.  Bell's inequalities versus teleportation: What is nonlocality? , 1994, Physical review letters.

[38]  R. Spekkens,et al.  The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations , 2011, 1104.0018.

[39]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[40]  S. Olmschenk,et al.  Quantum Teleportation Between Distant Matter Qubits , 2009, Science.

[41]  Jacob F. Sherson,et al.  Quantum teleportation between light and matter , 2006, Nature.

[42]  D. Awschalom,et al.  Teleportation of electronic many-qubit states encoded in the electron spin of quantum dots via single photons. , 2005, Physical review letters.

[43]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[44]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[45]  K. Kraus General state changes in quantum theory , 1971 .

[46]  Victor Veitch,et al.  The resource theory of stabilizer quantum computation , 2013, 1307.7171.

[47]  D. Janzing,et al.  Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer's Principle and the Second Law , 2000, quant-ph/0002048.

[48]  J. Watrous,et al.  Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. , 2015, Physical review letters.

[49]  Ryuji Takagi,et al.  General Resource Theories in Quantum Mechanics and Beyond: Operational Characterization via Discrimination Tasks , 2019, Physical Review X.

[50]  Gerardo Adesso,et al.  Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence. , 2016, Physical review letters.

[51]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[52]  Yasushi Hasegawa,et al.  Experimental time-reversed adaptive Bell measurement towards all-photonic quantum repeaters , 2019, Nature Communications.

[53]  F. Brandão,et al.  Reversible Framework for Quantum Resource Theories. , 2015, Physical review letters.

[54]  F. Brandão,et al.  Resource theory of quantum states out of thermal equilibrium. , 2011, Physical review letters.

[55]  Michal Oszmaniec,et al.  Operational relevance of resource theories of quantum measurements , 2019, Quantum.

[56]  Yunchao Liu,et al.  Operational resource theory of quantum channels , 2019, Physical Review Research.

[57]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[58]  Kaifeng Bu,et al.  One-Shot Operational Quantum Resource Theory. , 2019, Physical review letters.

[59]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[60]  C. H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[61]  A. Grudka,et al.  Axiomatic approach to contextuality and nonlocality , 2015, 1506.00509.

[62]  Barbara M. Terhal,et al.  Rank two bipartite bound entangled states do not exist , 2003, Theor. Comput. Sci..