Recognition of Whitehead-Minimal Elements in Free Groups of Large Ranks

In this paper we introduce a pattern classification system to recognize words of minimal length in their automorphic orbits in free groups. This system is based on Support Vector Machines and does not use any particular results from group theory. The main advantage of the system is its stable performance in recognizing minimal elements in free groups with large ranks.

[1]  R. Lyndon,et al.  Combinatorial Group Theory , 1977 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  J. Whitehead,et al.  On Equivalent Sets of Elements in a Free Group , 1936 .

[4]  Robert M. Haralick,et al.  Regression analysis and automorphic orbits in free groups of rank 2 , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[5]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[6]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[7]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[8]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[9]  Ilya Kapovich,et al.  Generic properties of Whitehead's Algorithm, stabilizers in Aut(Fk) and one-relator groups , 2003, ArXiv.

[10]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[11]  Alexei G. Myasnikov,et al.  Whitehead method and Genetic Algorithms , 2003, ArXiv.

[12]  Robert M. Haralick,et al.  Pattern Recognition Approaches to Solving Combinatorial Problems in Free Groups , 2006 .

[13]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[14]  David G. Stork,et al.  Pattern Classification , 1973 .

[15]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .