The effects of fossil placement and calibration on divergence times and rates: an example from the termites (Insecta: Isoptera).

[1]  France.,et al.  A Stochastic Model of Evolution , 2009, 0909.2108.

[2]  Michel Chapuisat,et al.  Eusociality and Cooperation , 2010 .

[3]  Gavin J. Svenson,et al.  Reconstructing the origins of praying mantises (Dictyoptera, Mantodea): the roles of Gondwanan vicariance and morphological convergence , 2009, Cladistics : the international journal of the Willi Hennig Society.

[4]  S. Baldauf,et al.  Eusociality and the success of the termites: insights from a supertree of dictyopteran families , 2009, Journal of evolutionary biology.

[5]  S. Ho,et al.  Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. , 2009, Systematic biology.

[6]  Kumar Krishna,et al.  Additional Distributional Records of Ambystoma Laterale, A. Jeffersonianum (Amphibia: Caudata) and Their Unisexual Kleptogens in Northeastern North America , 2008 .

[7]  M. Hutchinson,et al.  Phylogenetic uncertainty and molecular clock calibrations: a case study of legless lizards (Pygopodidae, Gekkota). , 2009, Molecular phylogenetics and evolution.

[8]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[9]  M. Whiting,et al.  The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. , 2008, Molecular phylogenetics and evolution.

[10]  S. Ho,et al.  Divergence dates of libelluloid dragonflies (Odonata: Anisoptera) estimated from rRNA using paired-site substitution models. , 2008, Molecular phylogenetics and evolution.

[11]  H. Hines Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). , 2008, Systematic biology.

[12]  D. Mindell,et al.  Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages , 2008, BMC Biology.

[13]  K. Irvine,et al.  Contributions of chaperone and glycosyltransferase activities of O-fucosyltransferase 1 to Notch signaling , 2008, BMC Biology.

[14]  Zhi-Qiang Zhang,et al.  Linnaeus Tercentenary: Progress in Invertebrate Taxonomy , 2007 .

[15]  P. S. Ward Phylogeny, classification, and species-level taxonomy of ants (Hymenoptera: Formicidae)* , 2007 .

[16]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[17]  T. Miura,et al.  Divergence times in the termite genus Macrotermes (Isoptera: Termitidae). , 2007, Molecular phylogenetics and evolution.

[18]  A. Vogler,et al.  A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. , 2007, Molecular phylogenetics and evolution.

[19]  E. Conti,et al.  Assessing calibration uncertainty in molecular dating: the assignment of fossils to alternative calibration points. , 2007, Systematic biology.

[20]  L. Hug,et al.  The impact of fossils and taxon sampling on ancient molecular dating analyses. , 2007, Molecular biology and evolution.

[21]  A. Nel,et al.  A reassessment of the Cretaceous amber deposits from France and their palaeontological significance , 2007 .

[22]  K. Kjer,et al.  Opinions on multiple sequence alignment, and an empirical comparison of repeatability and accuracy between POY and structural alignment. , 2007, Systematic biology.

[23]  W. P. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.01 (Build j28) , 2007 .

[24]  Brian L. Fisher,et al.  Evaluating alternative hypotheses for the early evolution and diversification of ants , 2006, Proceedings of the National Academy of Sciences.

[25]  Seán G. Brady,et al.  Recent and simultaneous origins of eusociality in halictid bees , 2006, Proceedings of the Royal Society B: Biological Sciences.

[26]  C. Moreau,et al.  Phylogeny of the Ants: Diversification in the Age of Angiosperms , 2006, Science.

[27]  D. Penny,et al.  Combined mitochondrial and nuclear DNA sequences resolve the interrelations of the major Australasian marsupial radiations. , 2006, Systematic biology.

[28]  S. Fuller,et al.  Molecular phylogenetics of the exoneurine allodapine bees reveal an ancient and puzzling dispersal from Africa to Australia. , 2006, Systematic biology.

[29]  H. Linder,et al.  Taxon sampling effects in molecular clock dating: an example from the African Restionaceae. , 2005, Molecular phylogenetics and evolution.

[30]  L. Bromham,et al.  Sociality and the rate of molecular evolution. , 2005, Molecular biology and evolution.

[31]  D. Grimaldi,et al.  Evolution of the insects , 2005 .

[32]  C. Noviello,et al.  Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. , 2005, Journal of human evolution.

[33]  C. Marshall The fossil record and estimating divergence times between lineages: Maximum divergene times and the importance of reliable phylogenies , 1990, Journal of Molecular Evolution.

[34]  H. Shaffer,et al.  Assessing Concordance of Fossil Calibration Points in Molecular Clock Studies: An Example Using Turtles , 2004, The American Naturalist.

[35]  D. Posada,et al.  Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. , 2004, Systematic biology.

[36]  M. Sanderson,et al.  Molecular evidence on plant divergence times. , 2004, American journal of botany.

[37]  Seán G. Brady,et al.  Single-copy nuclear genes recover cretaceous-age divergences in bees. , 2004, Systematic biology.

[38]  M. Springer Molecular clocks and the incompleteness of the fossil record , 1995, Journal of Molecular Evolution.

[39]  Ziheng Yang Estimating the pattern of nucleotide substitution , 1994, Journal of Molecular Evolution.

[40]  C. Brochu CALIBRATION AGE AND QUARTET DIVERGENCE DATE ESTIMATION , 2022 .

[41]  Zaid Abdo,et al.  Performance-based selection of likelihood models for phylogeny estimation. , 2003, Systematic biology.

[42]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[43]  D. Grimaldi A Revision of Cretaceous Mantises and Their Relationships, Including New Taxa (Insecta: Dictyoptera: Mantodea) , 2003 .

[44]  Michael J Benton,et al.  Dating the Tree of Life , 2003, Science.

[45]  C. Conroy,et al.  EXTRACTING TIME FROM PHYLOGENIES: POSITIVE INTERPLAY BETWEEN FOSSIL AND GENETIC DATA , 2003 .

[46]  S. O’Brien,et al.  Placental mammal diversification and the Cretaceous–Tertiary boundary , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[48]  B. Bolton Synopsis and classification of Formicidae , 2003 .

[49]  M. Rattray,et al.  Bayesian phylogenetics using an RNA substitution model applied to early mammalian evolution. , 2002, Molecular biology and evolution.

[50]  Masatoshi Nei,et al.  The Wilhelmine E. Key 2001 Invitational Lecture. Estimation of divergence times for a few mammalian and several primate species. , 2002, The Journal of heredity.

[51]  S. Tavaré,et al.  Using the fossil record to estimate the age of the last common ancestor of extant primates , 2002, Nature.

[52]  M. Stanhope,et al.  Molecular Phylogenetics and Evolution , 2002 .

[53]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[54]  M. Sanderson,et al.  ABSOLUTE DIVERSIFICATION RATES IN ANGIOSPERM CLADES , 2001, Evolution; international journal of organic evolution.

[55]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[56]  J. Serrão A comparative study of the proventricular structure in corbiculate apinae (Hymenoptera, Apidae). , 2001, Micron.

[57]  M. Engel Monophyly and extensive extinction of advanced eusocial bees: insights from an unexpected Eocene diversity. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  K. Ross Molecular ecology of social behaviour: analyses of breeding systems and genetic structure , 2001, Molecular ecology.

[59]  D. Grimaldi,et al.  A formicine in New Jersey cretaceous amber (Hymenoptera: formicidae) and early evolution of the ants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Oliver G. Pybus,et al.  Testing macro–evolutionary models using incomplete molecular phylogenies , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[61]  R. Crozier,et al.  Phylogenetic evidence for a single, ancestral origin of a ‘true’ worker caste in termites , 2000 .

[62]  M. Lenz,et al.  Transovarial Transmission of Symbiotic Bacteria in Mastotermes darwiniensis (Isoptera: Mastotermitidae): Ultrastructural Aspects and Phylogenetic Implications , 2000 .

[63]  M. Lenz,et al.  The ootheca of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae): homology with cockroach oothecae , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[64]  David T. Jones,et al.  Morphological phylogenetics of termites (Isoptera) , 2000 .

[65]  H. Noda,et al.  Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches , 2000, Current Biology.

[66]  M. Engel A New Interpretation of the Oldest Fossil Bee (Hymenoptera: Apidae) , 2000 .

[67]  D. Grimaldi,et al.  Early Fossil History of the Termites , 2000 .

[68]  C. Michener The Bees of the World , 2000 .

[69]  安部 琢哉,et al.  Termites: Evolution, Sociality, Symbioses, Ecology , 2000, Springer Netherlands.

[70]  Michael S. Y. Lee Molecular Clock Calibrations and Metazoan Divergence Dates , 1999, Journal of Molecular Evolution.

[71]  M. Lenz,et al.  Some aspects of intracellular symbiosis during embryo development of Mastotermes darwiniensis (Isoptera: Mastotermitidae). , 1998, Parassitologia.

[72]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[73]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[74]  B. L. Thorne Evolution of Eusociality in Termites , 1997 .

[75]  B. Rannala,et al.  Phylogenetic methods come of age: testing hypotheses in an evolutionary context. , 1997, Science.

[76]  R. Crozier,et al.  Molecular Evidence for a Jurassic Origin of Ants , 1997, Naturwissenschaften.

[77]  James M. Carpenter,et al.  New and rediscovered primitive ants (Hymenoptera: Formicidae) in Cretaceous amber from New Jersey, and their phylogenetic relationships , 1997 .

[78]  W. Crepet Timing in the evolution of derived floral characters: upper cretaceous (turonian) taxa with tricolpate and tricolpate-derived pollen , 1996 .

[79]  K. Kjer,et al.  Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. , 1995, Molecular phylogenetics and evolution.

[80]  W. Li,et al.  Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. , 1995, Molecular biology and evolution.

[81]  A. von Haeseler,et al.  A stochastic model for the evolution of autocorrelated DNA sequences. , 1994, Molecular phylogenetics and evolution.

[82]  A. Brower Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[83]  D. Littlewood,et al.  Paleontological data and molecular phylogenetic analysis , 1994, Paleobiology.

[84]  P. S. Ward Adetomyrma, an enigmatic new ant genus from Madagascar (Hymenoptera: Formicidae), and its implications for ant phylogeny , 1994 .

[85]  N. Goldman,et al.  Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. , 1994, Molecular biology and evolution.

[86]  R. Gutell,et al.  Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. , 1993, Nucleic acids research.

[87]  M. Donoghue,et al.  Phylogenies and angiosperm diversification , 1993, Paleobiology.

[88]  Robin Ray Gutell,et al.  Collection of small subunit (16S- and 16S-like) ribosomal RNA structures , 1993, Nucleic Acids Res..

[89]  P. S. Ward,et al.  The internal phylogeny of ants (Hymenoptera: Formicidae) , 1992 .

[90]  D. Smith Diversity in the Genus Apis , 2019 .

[91]  T. P. Burns,et al.  Why don’t all termite species have a sterile worker caste? , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[92]  C. Noirot Social structure in termite societies , 1989 .

[93]  W. Fitch,et al.  The evolution of prokaryotic ferredoxins--with a general method correcting for unobserved substitutions in less branched lineages. , 1987, Molecular biology and evolution.

[94]  D. Grimaldi Phylogenetics and taxonomy of Zygothrica (Diptera : Drosophilidae) , 1987 .

[95]  O. Lomholdt On the origin of the bees (Hymenoptera: Apidae, Sphecidae) , 1982 .

[96]  J. Oppenheimer,et al.  A Reassessment , 1979 .

[97]  C. Michener Biogeography of the Bees , 1979 .

[98]  C. Michener,et al.  Comparative external morphology, phylogeny, and a classification of the bees (Hymenoptera). Bulletin of the AMNH ; v. 82, article 6 , 1944 .

[99]  A. D. Imms On the Structure and Biology of Archotermopsis, Together with Descriptions of New Species of Intestinal Protozoa, and General Observations on the Isoptera , 1920 .

[100]  R. Matthews,et al.  Ants. , 1898, Science.

[101]  J. Nylander,et al.  Model Selection and Model Averaging in Phylogenetics , 2022 .