One-step synthesis of silver nanoshells with bumps for highly sensitive near-IR SERS nanoprobes.

A seedless, one-step synthetic route to uniform bumpy silver nanoshells (AgNSs) as highly NIR sensitive SERS substrates is reported. These substrates can incorporate Raman label compounds and biocompatible polymers on their surface. AgNS based NIR-SERS probes are successfully applied to cell tracking in a live animal using a portable Raman system.

[1]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[2]  J. C. Flores,et al.  Variations in morphologies of silver nanoshells on silica spheres , 2008 .

[3]  U. S. Dinish,et al.  Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags , 2012 .

[4]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.

[5]  Jun‐Hyun Kim,et al.  Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[6]  N. Stone,et al.  Tracking bisphosphonates through a 20 mm thick porcine tissue by using surface-enhanced spatially offset Raman spectroscopy. , 2012, Angewandte Chemie.

[7]  J. Choo,et al.  Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres. , 2009, Analytical chemistry.

[8]  Duncan Graham,et al.  Selective detection of deoxyribonucleic acid at ultralow concentrations by SERRS , 1997 .

[9]  Michael J Sailor,et al.  SERS‐Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near‐Infrared Imaging and Photothermal Heating , 2009, Advanced materials.

[10]  Luke P. Lee,et al.  Magnetic Nanocrescents as Controllable Surface‐Enhanced Raman Scattering Nanoprobes for Biomolecular Imaging , 2005 .

[11]  Naomi J. Halas,et al.  Silver Nanoshells: Variations in Morphologies and Optical Properties , 2001 .

[12]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[13]  Wei Song,et al.  Detection of proteins on silica-silver core-shell substrates by surface-enhanced Raman spectroscopy. , 2011, Journal of colloid and interface science.

[14]  Yuming Zhou,et al.  Deposition of silver nanoparticles on silica spheres via ultrasound irradiation , 2007 .

[15]  V. Pol,et al.  Sonochemical Deposition of Silver Nanoparticles on Silica Spheres , 2002 .

[16]  Hao Guo,et al.  Preparation of stable core–shell dye adsorbent Ag-coated silica nanospheres as a highly active surfaced-enhanced Raman scattering substrate for detection of Rhodamine 6G , 2012 .

[17]  N. Halas,et al.  Light scattering from spherical plasmonic nanoantennas: effects of nanoscale roughness , 2006 .

[18]  L. Tay,et al.  Nanoaggregate‐Embedded Beads as Novel Raman Labels for Biodetection , 2009 .

[19]  R. Álvarez-Puebla,et al.  Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[20]  M. Haase,et al.  3D self-assembled plasmonic superstructures of gold nanospheres: synthesis and characterization at the single-particle level. , 2011, Small.

[21]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[22]  Janina Kneipp,et al.  In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. , 2006, Nano letters.

[23]  Jesse V Jokerst,et al.  Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. , 2012, ACS nano.

[24]  Dan Wang,et al.  Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. , 2013, Angewandte Chemie.

[25]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[26]  Homan Kang,et al.  Ultrasensitive, Biocompatible, Quantum‐Dot‐Embedded Silica Nanoparticles for Bioimaging , 2012 .

[27]  Homan Kang,et al.  Base effects on fabrication of silver nanoparticles embedded silica nanocomposite for surface-enhanced Raman scattering (SERS). , 2011, Journal of nanoscience and nanotechnology.

[28]  Andrew A Berlin,et al.  Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures. , 2005, Nano letters.

[29]  Frank Caruso,et al.  Metallodielectric opals of layer-by-layer processed coated colloids , 2002 .

[30]  B. Draine,et al.  User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2 , 2003, 1002.1505.

[31]  Shuming Nie,et al.  Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. , 2003, Analytical chemistry.

[32]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[33]  Nai-Ben Ming,et al.  Facile Methods to Coat Polystyrene and Silica Colloids with Metal , 2004 .

[34]  N J Halas,et al.  Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Dan Wang,et al.  Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging. , 2011, Biomaterials.

[36]  K. Kneipp,et al.  Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. , 2006, Accounts of chemical research.

[37]  Sebastian Schlücker,et al.  Optical properties and SERS efficiency of tunable gold/silver nanoshells , 2009 .

[38]  Luis M Liz-Marzán,et al.  Intracellular mapping with SERS-encoded gold nanostars. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[39]  G. Blanchard,et al.  Formation of gold nanoparticles using amine reducing agents. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[40]  R. Weissleder A clearer vision for in vivo imaging , 2001, Nature Biotechnology.

[41]  Sangwoon Yoon,et al.  Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies. , 2012, ACS nano.

[42]  A. Dong,et al.  Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction. , 2002, Chemical communications.

[43]  Alexander Marx,et al.  SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells. , 2009, Angewandte Chemie.

[44]  M. J. Carter,et al.  Oxygen carrier and redox properties of some neutral cobalt chelates. Axial and in-plane ligand effects , 1974 .

[45]  Deren Yang,et al.  An improved seed-mediated growth method to coat complete silver shells onto silica spheres for surface-enhanced Raman scattering , 2011 .

[46]  M. Natan,et al.  Glass-Coated, Analyte-Tagged Nanoparticles: A New Tagging System Based on Detection with Surface-Enhanced Raman Scattering , 2003 .

[47]  J. Choo,et al.  Quantitative Analysis of Disease Biomarkers Using Surface-Enhanced Raman Scattering Spectroscopy , 2014 .

[48]  C. Zhang,et al.  Synthesis of Ag-coated polystyrene colloids by an improved surface seeding and shell growth technique , 2006 .

[49]  Yang Wang,et al.  Near-Infrared Surface-Enhanced Raman Scattering (NIR SERS) on Colloidal Silver and Gold , 1994 .

[50]  Chun-yan Liu,et al.  Seed-Mediated Growth Technique for the Preparation of a Silver Nanoshell on a Silica Sphere , 2003 .

[51]  N. Ming,et al.  A solvent-assisted route for coating polystyrene colloids with Ag and the corresponding hollow Ag spheres , 2007 .

[52]  Lianzhou Wang,et al.  Controllable fabrication of PS/Ag core-shell-shaped nanostructures , 2012, Nanoscale Research Letters.

[53]  Shaochun Tang,et al.  Synthesis and characterization of silica–silver core–shell composite particles with uniform thin silver layers , 2007 .

[54]  Joseph Irudayaraj,et al.  Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging. , 2010, ACS nano.

[55]  Sanjiv S. Gambhir,et al.  Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[56]  T. Hyeon,et al.  Magnetic field induced aggregation of nanoparticles for sensitive molecular detection. , 2011, Physical chemistry chemical physics : PCCP.

[57]  Yong-Kweon Kim,et al.  Protein separation and identification using magnetic beads encoded with surface-enhanced Raman spectroscopy. , 2009, Analytical biochemistry.

[58]  Bong-Hyun Jun,et al.  Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. , 2006, Analytical chemistry.

[59]  M. Palaniandavar,et al.  Influence of chelate-ring size and number of sulfur-donor atoms on spectra and redox behaviour of copper(II) bis(benzimidazolyl) tetra- and penta-thloether complexes , 1994 .

[60]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[61]  Malini Olivo,et al.  Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. , 2011, Angewandte Chemie.

[62]  Homan Kang,et al.  Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles. , 2011, Chemical communications.

[63]  S. Gosavi,et al.  Optical detection of antibody using silica–silver core–shell particles , 2005 .

[64]  M. Porter,et al.  Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. , 1999, Analytical chemistry.

[65]  Glenn P. Goodrich,et al.  Controlled texturing modifies the surface topography and plasmonic properties of Au nanoshells. , 2005, The journal of physical chemistry. B.

[66]  P. Prasad,et al.  Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold-silver core-shell nanostructures , 2006 .

[67]  Dhermendra K. Tiwari,et al.  Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats , 2011, Toxicology mechanisms and methods.

[68]  Homan Kang,et al.  Near‐Infrared SERS Nanoprobes with Plasmonic Au/Ag Hollow‐Shell Assemblies for In Vivo Multiplex Detection , 2013 .

[69]  Snigdhamayee Praharaj,et al.  Synthesis of Normal and Inverted Gold−Silver Core−Shell Architectures in β-Cyclodextrin and Their Applications in SERS , 2007 .

[70]  Sebastian Schlücker,et al.  SERS microscopy: nanoparticle probes and biomedical applications. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[71]  A. Moore,et al.  Noninvasive MRI-SERS imaging in living mice using an innately bimodal nanomaterial. , 2011, ACS nano.

[72]  Yang Liu,et al.  Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection. , 2013, Analytical chemistry.

[73]  Feng Li,et al.  Preparation of spindle-shape silver core-shell particles , 2005 .

[74]  Joseph Irudayaraj,et al.  Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection. , 2007, Analytical chemistry.