Simulation-Based Electric Vehicle Sustainable Routing with Time-Dependent Stochastic Information

We propose a routing method for electric vehicles that finds a route with minimal expected travel time in time-dependent stochastic networks. The method first estimates whether the vehicle can reach the destination with the current battery level and selects potential reasonable charging stations if needed. Then, the route-search problem is formulated as a shortest path problem with time-dependent stochastic disruptions, using a Markov decision process. The shortest path problem is solved by an approximate dynamic programming algorithm to improve calculation efficiency in complex networks. Several simulation cases and a scenario-based example are given to prove the validity of the method.