Unconditional stability and error estimates of the modified characteristics FEMs for the time-dependent incompressible MHD equations

Abstract This paper focuses on the unconditional stability and convergence of characteristics type methods for the time-dependent incompressible MHD equations. For this purpose, we introduce a new characteristics time-discrete system. The optimal error estimates in L 2 and H 1 norms for the typical modified characteristics finite element method unconditionally can be deduced, while the whole previous works require certain time-step restrictions. Some numerical experiments document performance of the characteristics type methods for the time-dependent incompressible MHD equations.

[1]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[2]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[3]  Rodolfo Bermejo,et al.  A Second Order in Time Modified Lagrange-Galerkin Finite Element Method for the Incompressible Navier-Stokes Equations , 2012, SIAM J. Numer. Anal..

[4]  Yinnian He,et al.  Two-Level Newton Iterative Method for the 2D/3D Stationary Incompressible Magnetohydrodynamics , 2015, J. Sci. Comput..

[5]  M. Gunzburger,et al.  On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics , 1991 .

[6]  Rodolfo Bermejo,et al.  Modified Lagrange–Galerkin methods of first and second order in time for convection–diffusion problems , 2012, Numerische Mathematik.

[7]  Yinnian He,et al.  Analysis of coupling iterations based on the finite element method for stationary magnetohydrodynamics on a general domain , 2014, Comput. Math. Appl..

[8]  D. Schötzau,et al.  A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics , 2010 .

[9]  Yinnian He,et al.  Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics , 2014 .

[10]  Dominik Schötzau,et al.  Mixed finite element approximation of incompressible MHD problems based on weighted regularization , 2004 .

[11]  Zhiyong Si,et al.  Error estimate of a fully discrete defect correction finite element method for unsteady incompressible Magnetohydrodynamics equations , 2018 .

[12]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[13]  Zhiyong Si,et al.  Modified Characteristics Gauge–Uzawa Finite Element Method for Time Dependent Conduction–Convection Problems , 2014, J. Sci. Comput..

[14]  Jörn Sesterhenn,et al.  A characteristic-type formulation of the Navier–Stokes equations for high order upwind schemes , 2000 .

[15]  Yunxia Wang,et al.  Defect correction finite element method for the stationary incompressible Magnetohydrodynamics equation , 2016, Appl. Math. Comput..

[16]  Yinnian He,et al.  Two-Level Method Based on Finite Element and Crank-Nicolson Extrapolation for the Time-Dependent Navier-Stokes Equations , 2003, SIAM J. Numer. Anal..

[17]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[18]  Peter D. Minev,et al.  Mixed Finite Element approximation of an MHD problem involving conducting and insulating regions: the 2D case , 2002 .

[19]  Roger Temam,et al.  Some mathematical questions related to the MHD equations , 1983 .

[20]  P. Davidson An Introduction to Magnetohydrodynamics , 2001 .

[21]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[22]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[23]  H. Branover,et al.  A Finite-Element Analysis of Two-Dimensional MHD Flow , 1983 .

[24]  Xiaobing Feng,et al.  A Modified Characteristic Finite Element Method for a Fully Nonlinear Formulation of the Semigeostrophic Flow Equations , 2008, SIAM J. Numer. Anal..

[25]  Weiwei Sun,et al.  Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.

[26]  Zhiyong Si,et al.  A semi‐discrete defect correction finite element method for unsteady incompressible magnetohydrodynamics equations , 2017 .

[27]  Endre Süli,et al.  Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations , 1988 .

[28]  Jean-Luc Guermond,et al.  Mixed finite element approximation of an MHD problem involving conducting and insulating regions: The 3D case , 2003 .

[29]  Weiwei Sun,et al.  A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media , 2014, SIAM J. Numer. Anal..

[30]  Yinnian He Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .

[31]  Jean-Luc Guermond,et al.  Convergence Analysis of a Finite Element Projection/Lagrange-Galerkin Method for the Incompressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..