Fast Dynamic Programming on Graph Decompositions

In this paper, we consider tree decompositions, branch decompositions, and clique decompositions. We improve the running time of dynamic programming algorithms on these graph decompositions for a large number of problems as a function of the treewidth, branchwidth, or cliquewidth, respectively. On tree decompositions of width $k$, we improve the running time for Dominating Set to $O(3^k)$. We generalise this result to $[\rho,\sigma]$-domination problems with finite or cofinite $\rho$ and $\sigma$. For these problems, we give $O(s^k)$-time algorithms, where $s$ is the number of `states' a vertex can have in a standard dynamic programming algorithm for such a problems. Furthermore, we give an $O(2^k)$-time algorithm for counting the number of perfect matchings in a graph, and generalise this to $O(2^k)$-time algorithms for many clique covering, packing, and partitioning problems. On branch decompositions of width $k$, we give an $O(3^{\frac{\omega}{2}k})$-time algorithm for Dominating Set, an $O(2^{\frac{\omega}{2}k})$-time algorithm for counting the number of perfect matchings, and $O(s^{\frac{\omega}{2}k})$-time algorithms for $[\rho,\sigma]$-domination problems involving $s$ states with finite or cofinite $\rho$ and $\sigma$. Finally, on clique decompositions of width $k$, we give $O(4^k)$-time algorithms for Dominating Set, Independent Dominating Set, and Total Dominating Set. The main techniques used in this paper are a generalisation of fast subset convolution, as introduced by Bj\"orklund et al., now applied in the setting of graph decompositions and augmented such that multiple states and multiple ranks can be used. Recently, Lokshtanov et al. have shown that some of the algorithms obtained in this paper have running times in which the base in the exponents is optimal, unless the Strong Exponential-Time Hypothesis fails.

[1]  Dimitrios M. Thilikos,et al.  Constructive Linear Time Algorithms for Branchwidth , 1997, ICALP.

[2]  Jan Arne Telle,et al.  Complexity of Domination-Type Problems in Graphs , 1994, Nord. J. Comput..

[3]  Arie M. C. A. Koster,et al.  Solving partial constraint satisfaction problems with tree decomposition , 2002, Networks.

[4]  Raimund Seidel,et al.  On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs , 1995, J. Comput. Syst. Sci..

[5]  Jesper Nederlof Fast Polynomial-Space Algorithms Using Möbius Inversion: Improving on Steiner Tree and Related Problems , 2009, ICALP.

[6]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[7]  Andreas Björklund,et al.  Exact Algorithms for Exact Satisfiability and Number of Perfect Matchings , 2007, Algorithmica.

[8]  Michael L. Fredman,et al.  Surpassing the Information Theoretic Bound with Fusion Trees , 1993, J. Comput. Syst. Sci..

[9]  Dániel Marx,et al.  Known algorithms on graphs of bounded treewidth are probably optimal , 2010, SODA '11.

[10]  Illya V. Hicks Graphs, branchwidth, and tangles! Oh my! , 2005, Networks.

[11]  Arie M. C. A. Koster,et al.  Branch and Tree Decomposition Techniques for Discrete Optimization , 2005 .

[12]  Martin Fürer,et al.  Faster integer multiplication , 2007, STOC '07.

[13]  Dimitrios M. Thilikos,et al.  Catalan structures and dynamic programming in H-minor-free graphs , 2008, SODA '08.

[14]  Udi Rotics,et al.  Polynomial-time recognition of clique-width ≤3 graphs , 2012, Discret. Appl. Math..

[15]  Dimitrios M. Thilikos,et al.  Dominating sets in planar graphs: branch-width and exponential speed-up , 2003, SODA '03.

[16]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[17]  Stefan Richter,et al.  Enumerate and Expand: Improved Algorithms for Connected Vertex Cover and Tree Cover , 2006, Theory of Computing Systems.

[18]  Andreas Björklund,et al.  Set Partitioning via Inclusion-Exclusion , 2009, SIAM J. Comput..

[19]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[20]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions , 2005, ESA.

[21]  Rolf Niedermeier,et al.  Improved Tree Decomposition Based Algorithms for Domination-like Problems , 2002, LATIN.

[22]  Erik D. Demaine,et al.  The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..

[23]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[24]  V. Strassen Gaussian elimination is not optimal , 1969 .

[25]  B. D. Fluiter Algorithms for graphs of small treewidth , 1997 .

[26]  Alon Itai,et al.  Finding a minimum circuit in a graph , 1977, STOC '77.

[27]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[28]  Frederic Dorn,et al.  Dynamic Programming and Fast Matrix Multiplication , 2006, ESA.

[29]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[30]  Frederic Dorn,et al.  Dynamic programming and planarity: Improved tree-decomposition based algorithms , 2010, Discret. Appl. Math..

[31]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[32]  Arie M. C. A. Koster,et al.  Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..

[33]  Alex D. Scott,et al.  Linear-programming design and analysis of fast algorithms for Max 2-CSP , 2006, Discret. Optim..

[34]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[35]  Jan Arne Telle,et al.  H-join decomposable graphs and algorithms with runtime single exponential in rankwidth , 2010, Discret. Appl. Math..

[36]  Dimitrios M. Thilikos,et al.  A Simple and Fast Approach for Solving Problems on Planar Graphs , 2004, STACS.

[37]  Rolf H. Möhring,et al.  The Pathwidth and Treewidth of Cographs , 1990, SIAM J. Discret. Math..

[38]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[39]  Robert Ganian,et al.  On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width , 2010, Discret. Appl. Math..

[40]  Udi Rotics,et al.  Clique-Width is NP-Complete , 2009, SIAM J. Discret. Math..

[41]  Fedor V. Fomin,et al.  On Two Techniques of Combining Branching and Treewidth , 2009, Algorithmica.

[42]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[43]  Rolf Niedermeier,et al.  Speeding up Dynamic Programming for Some NP-Hard Graph Recoloring Problems , 2008, TAMC.

[44]  David Eppstein Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.

[45]  Christian Komusiewicz,et al.  Parameterized Algorithms and Hardness Results for Some Graph Motif Problems , 2008, CPM.

[46]  Hans L. Bodlaender,et al.  Polynomial Algorithms for Graph Isomorphism and Chromatic Index on Partial k-Trees , 1988, J. Algorithms.

[47]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs , 2002, Algorithmica.

[48]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[49]  Torben Hagerup,et al.  Sorting and Searching on the Word RAM , 1998, STACS.

[50]  Thomas C. van Dijk,et al.  Inclusion/Exclusion Meets Measure and Conquer , 2009, ESA.

[51]  Udi Rotics,et al.  Edge dominating set and colorings on graphs with fixed clique-width , 2003, Discret. Appl. Math..

[52]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[53]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[54]  Paul D. Seymour,et al.  Tour Merging via Branch-Decomposition , 2003, INFORMS J. Comput..

[55]  Illya V. Hicks Graphs, branchwidth, and tangles! Oh my! , 2005 .

[56]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[57]  Hans L. Boblaender Polynomial algorithms for graph isomorphism and chromatic index on partial k -trees , 1990 .

[58]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[59]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[60]  Mikko Koivisto,et al.  Partitioning into Sets of Bounded Cardinality , 2009, IWPEC.

[61]  Arie M. C. A. Koster,et al.  Treewidth computations I. Upper bounds , 2010, Inf. Comput..

[62]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[63]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[64]  Frederic Dorn,et al.  Designing Subexponential Algorithms: Problems, Techniques & Structures , 2007 .

[65]  Jan Arne Telle,et al.  Boolean-Width of Graphs , 2009, IWPEC.

[66]  Maria J. Serna,et al.  Cutwidth I: A linear time fixed parameter algorithm , 2005, J. Algorithms.