Visual pattern memory without shape recognition.

Visual pattern memory of Drosophila melanogaster at the torque meter is investigated by a new learning paradigm called novelty choice. In this procedure the fly is first exposed to four identical patterns presented at the wall of the cylinder surrounding it. In the test it has the choice between two pairs of patterns, a new one and one the same as the training pattern. Flies show a lasting preference for the new figure. Figures presented during training are not recognized as familiar in the test, if displayed (i) at a different height, (ii) at a different size, (iii) rotated or (iv) after contrast reversal. No special invariance mechanisms are found. A pixel-by-pixel matching process is sufficient to explain the observed data. Minor transfer effects can be explained if a graded similarity function is assumed. Recognition depends upon the overlap between the stored template and the actual image. The similarity function is best described by the ratio of the area of overlap to the area of the actual image. The similarity function is independent of the geometrical properties of the employed figures. Visual pattern memory at this basic level does not require the analysis of shape.

[1]  C. Thinus-Blanc,et al.  A rapid test of rodents' vision using a modified open field apparatus , 1993, Physiology & Behavior.

[2]  M. Srinivasan,et al.  Visual Discrimination of Pattern Orientation by Honeybees: Performance and Implications for `Cortical' Processing , 1994 .

[3]  J. L. Gould Honey bee cognition , 1990, Cognition.

[4]  Simon B. Laughlin,et al.  Form and function in retinal processing , 1987, Trends in Neurosciences.

[5]  K. Götz,et al.  Visual guidance in Drosophila. In: Development and Neurobiology of Drosophila , 1980 .

[6]  T. S. Collett,et al.  Biological compasses and the coordinate frame of landmark memories in honeybees , 1994, Nature.

[7]  Thomas S. Collett,et al.  Landmark learning and guidance in insects , 1992 .

[8]  M. Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .

[9]  R. Shepard,et al.  Mental Rotation of Three-Dimensional Objects , 1971, Science.

[10]  W. Muntz Intraretinal Transfer and the Function of the Optic Lobes in Octopus , 1963 .

[11]  S. W. Zhang,et al.  Is pattern vision in insects mediated by 'cortical' processing? , 1993, Nature.

[12]  Reinhard Wolf,et al.  Visual pattern recognition in Drosophila involves retinotopic matching , 1993, Nature.

[13]  George Adrian Horridge,et al.  Bees can combine range and visual angle to estimate absolute size , 1992 .

[14]  G. Orban,et al.  Cue-invariant shape selectivity of macaque inferior temporal neurons. , 1993, Science.

[15]  W. Reichardt,et al.  First Steps in a Behavioral Analysis of Pattern Discrimination in Diptera , 1972 .

[16]  J Cerella,et al.  Pigeon Pattern Perception: Limits on Perspective Invariance , 1990, Perception.

[17]  R. Myers,et al.  Interocular transfer of pattern discrimination in cats following section of crossed optic fibers. , 1955, Journal of comparative and physiological psychology.

[18]  J. O'Regan,et al.  Some results on translation invariance in the human visual system. , 1990, Spatial vision.

[19]  J D Delius,et al.  Rotational invariance in visual pattern recognition by pigeons and humans. , 1982, Science.

[20]  A. J. Mistlin,et al.  Visual cells in the temporal cortex sensitive to face view and gaze direction , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  Erich Buchner,et al.  Behavioural Analysis of Spatial Vision in Insects , 1984 .

[22]  Alun M. Anderson Shape perception in the honey bee , 1977, Animal Behaviour.

[23]  R. Wehner Spatial Vision in Arthropods , 1981 .

[24]  David O'Carroll,et al.  Feature-detecting neurons in dragonflies , 1993, Nature.

[25]  N. S. Sutherland,et al.  Intraretinal transfer of a learned visual shape discrimination in goldfish after section and regeneration of the optic nerve brachia , 1966 .

[26]  R. Desimone,et al.  Shape recognition and inferior temporal neurons. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. F. Thompson,et al.  Habituation: a model phenomenon for the study of neuronal substrates of behavior. , 1966, Psychological review.

[28]  D. Ingle Mechanisms of Shape-Recognition Among Vertebrates , 1978 .

[29]  N. Sutherland Outlines of a theory of visual pattern recognition in animals and man , 1968, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[30]  R Wehner,et al.  Spontaneous pattern preferences of Drosophila melanogaster to black areas in various parts of the visual field. , 1972, Journal of insect physiology.

[31]  B. A. Cartwright,et al.  How honey bees use landmarks to guide their return to a food source , 1982, Nature.

[32]  R. Wehner Pattern Modulation and Pattern Detection in the Visual System of Hymenoptera , 1972 .

[33]  D. Peterzell Individual differences in the visual attention of human infants: further evidence for separate sensitization and habituation processes. , 1993, Developmental psychobiology.

[34]  David C. O'Carroll,et al.  Insect perception of illusory contours , 1992 .

[35]  K. Götz Visual guidance in Drosophila. , 1980, Basic life sciences.

[36]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[37]  C. Bundesen,et al.  Visual transformation of size. , 1975, Journal of experimental psychology. Human perception and performance.

[38]  Rüdiger Wehner,et al.  Does interocular transfer occur in visual navigation by ants? , 1985, Nature.

[39]  N. Sutherland,et al.  Shape discrimination in rat, octopus, and goldfish: a comparative study. , 1969, Journal of comparative and physiological psychology.

[40]  I. Biederman,et al.  Evidence for Complete Translational and Reflectional Invariance in Visual Object Priming , 1991, Perception.