Cross-species functional alignment reveals evolutionary hierarchy within the connectome

[1]  Stamatios N. Sotiropoulos,et al.  Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing , 2019, NeuroImage.

[2]  Roberto Toro,et al.  Role of mechanical morphogenesis in the development and evolution of the neocortex. , 2019, Physics of life reviews.

[3]  Pierre-Louis Bazin,et al.  Evolution of neocortical folding: A phylogenetic comparative analysis of MRI from 34 primate species , 2019, Cortex.

[4]  L. Petit,et al.  The comparative anatomy of frontal eye fields in primates , 2019, Cortex.

[5]  Maurizio Corbetta,et al.  The evolution of the temporoparietal junction and posterior superior temporal sulcus , 2019, Cortex.

[6]  Mark Jenkinson,et al.  Cross-species cortical alignment identifies different types of neuroanatomical reorganization in higher primates , 2019 .

[7]  Mark Jenkinson,et al.  Cross-species cortical alignment identifies different types of neuroanatomical reorganization in the temporal lobe of higher primates , 2019, bioRxiv.

[8]  Kazuhiko Seki,et al.  Distinct sensorimotor feedback loops for dynamic and static control of primate precision grip , 2019, Communications Biology.

[9]  M. A. García-Cabezas,et al.  Evolution, development, and organization of the cortical connectome , 2019, PLoS biology.

[10]  Dante Mantini,et al.  Functional specialization of macaque premotor F5 subfields with respect to hand and mouth movements: A comparison of task and resting-state fMRI , 2019, NeuroImage.

[11]  Daniel S. Margulies,et al.  Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey , 2019, Nature Communications.

[12]  Lianne H. Scholtens,et al.  Evolutionary expansion of connectivity between multimodal association areas in the human brain compared with chimpanzees , 2019, Proceedings of the National Academy of Sciences.

[13]  Daniel S. Margulies,et al.  Interindividual Variability of Functional Connectivity in Awake and Anesthetized Rhesus Macaque Monkeys , 2019, Biological psychiatry. Cognitive neuroscience and neuroimaging.

[14]  Hao-Ting Wang,et al.  Modes of operation: A topographic neural gradient supporting stimulus dependent and independent cognition , 2019, NeuroImage.

[15]  Daniel S. Margulies,et al.  Inter-individual Variability of Functional Connectivity in Awake and Anesthetized Rhesus Monkeys , 2019, bioRxiv.

[16]  Charles R. E. Wilson,et al.  Sulcal organization in the medial frontal cortex reveals insights into primate brain evolution , 2019, bioRxiv.

[17]  G. Deco,et al.  Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain , 2019, Science Advances.

[18]  Alan C. Evans,et al.  Microstructural and functional gradients are increasingly dissociated in transmodal cortices , 2019, PLoS biology.

[19]  G. Varoquaux,et al.  Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants , 2018, Proceedings of the National Academy of Sciences.

[20]  Saad Jbabdi,et al.  Connectivity Fingerprints: From Areal Descriptions to Abstract Spaces , 2018, Trends in Cognitive Sciences.

[21]  Leonardo Cerliani,et al.  Structural Variability Across the Primate Brain: A Cross-Species Comparison , 2018, Cerebral cortex.

[22]  Markus H. Sneve,et al.  High-Expanding Regions in Primate Cortical Brain Evolution Support Supramodal Cognitive Flexibility. , 2018, Cerebral cortex.

[23]  Daniel S. Margulies,et al.  An Open Resource for Non-human Primate Imaging , 2018, Neuron.

[24]  D. Margulies,et al.  Default mode network can support the level of detail in experience during active task states , 2018, Proceedings of the National Academy of Sciences.

[25]  Matthew F. Glasser,et al.  Development and Evolution of Cerebral and Cerebellar Cortex , 2018, Brain, Behavior and Evolution.

[26]  A. Bernacchia,et al.  Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography , 2018, Nature Neuroscience.

[27]  Chad J. Donahue,et al.  Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates , 2018, Proceedings of the National Academy of Sciences.

[28]  Hao-Ting Wang,et al.  Distant from input: Evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition , 2018, NeuroImage.

[29]  Alexander Opitz,et al.  Delineating the macroscale areal organization of the macaque cortex in vivo , 2017, bioRxiv.

[30]  R. Passingham,et al.  Whole brain comparative anatomy using connectivity blueprints , 2018, bioRxiv.

[31]  Michael W. Cole,et al.  Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks , 2017, Proceedings of the National Academy of Sciences.

[32]  Koen V. Haak,et al.  Connectopic mapping with resting-state fMRI , 2016, NeuroImage.

[33]  David K. Menon,et al.  Default mode contributions to automated information processing , 2017, Proceedings of the National Academy of Sciences.

[34]  E. Koechlin,et al.  Managing competing goals — a key role for the frontopolar cortex , 2017, Nature Reviews Neuroscience.

[35]  Satrajit S. Ghosh,et al.  Diffeomorphic functional brain surface alignment: Functional demons , 2017, NeuroImage.

[36]  Rodrigo M. Braga,et al.  Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity , 2017, Neuron.

[37]  N. Šestan,et al.  Evolution of the Human Nervous System Function, Structure, and Development , 2017, Cell.

[38]  A. Rees,et al.  Auditory motion-specific mechanisms in the primate brain , 2017, PLoS biology.

[39]  Ross S. Muers,et al.  Functional Imaging of Audio–Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences? , 2017, Cerebral cortex.

[40]  Hao-Ting Wang,et al.  The role of the default mode network in component processes underlying the wandering mind , 2017, Social cognitive and affective neuroscience.

[41]  Julia M. Huntenburg,et al.  A Systematic Relationship Between Functional Connectivity and Intracortical Myelin in the Human Cerebral Cortex , 2017, Cerebral cortex.

[42]  Ravi S. Menon,et al.  Frontoparietal Functional Connectivity in the Common Marmoset , 2016, Cerebral cortex.

[43]  Andreas Nieder,et al.  Dual Neural Network Model for the Evolution of Speech and Language , 2016, Trends in Neurosciences.

[44]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[45]  Timothy D. Griffiths,et al.  Individually customisable non-invasive head immobilisation system for non-human primates with an option for voluntary engagement , 2016, Journal of Neuroscience Methods.

[46]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[47]  Chad J. Donahue,et al.  Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey , 2016, The Journal of Neuroscience.

[48]  Simon B. Eickhoff,et al.  A cross-modal, cross-species comparison of connectivity measures in the primate brain , 2016, NeuroImage.

[49]  Christopher L. Asplund,et al.  Functional Specialization and Flexibility in Human Association Cortex. , 2016, Cerebral cortex.

[50]  Karla L. Miller,et al.  The extreme capsule fiber complex in humans and macaque monkeys: a comparative diffusion MRI tractography study , 2015, Brain Structure and Function.

[51]  W. Marslen-Wilson,et al.  Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans , 2015, Nature Communications.

[52]  Christopher L. Asplund,et al.  Functional Specialization and Flexibility in Human Association Cortex. , 2015, Cerebral cortex.

[53]  Evan M. Gordon,et al.  Functional System and Areal Organization of a Highly Sampled Individual Human Brain , 2015, Neuron.

[54]  William L. Jungers,et al.  The evolution of human and ape hand proportions , 2015, Nature Communications.

[55]  M. Corbetta,et al.  Functional evolution of new and expanded attention networks in humans , 2015, Proceedings of the National Academy of Sciences.

[56]  W. Vanduffel,et al.  Covert Shifts of Spatial Attention in the Macaque Monkey , 2015, The Journal of Neuroscience.

[57]  Simon Baumann,et al.  This Work Is Licensed under a Creative Commons Attribution 4.0 International License Date Deposited: the Topography of Frequency and Time Representation in Primate Auditory Cortices , 2022 .

[58]  Xi-Nian Zuo,et al.  A Connectome Computation System for discovery science of brain , 2015 .

[59]  Katrin Krumbholz,et al.  Parcellation of Human and Monkey Core Auditory Cortex with fMRI Pattern Classification and Objective Detection of Tonotopic Gradient Reversals , 2014, Cerebral cortex.

[60]  T. Toda,et al.  The Ventral Primary Somatosensory Cortex of the Primate Brain: Innate Neural Interface for Dexterous Orofacial Motor Control , 2015 .

[61]  Brian D. Mills,et al.  Large-scale topology and the default mode network in the mouse connectome , 2014, Proceedings of the National Academy of Sciences.

[62]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[63]  Anna S. Mitchell,et al.  A Neural Circuit Covarying with Social Hierarchy in Macaques , 2014, PLoS biology.

[64]  William D. Hopkins,et al.  Evolution of the Central Sulcus Morphology in Primates , 2014, Brain, Behavior and Evolution.

[65]  Karla L. Miller,et al.  Primate comparative neuroscience using magnetic resonance imaging: promises and challenges , 2014, Front. Neurosci..

[66]  William D. Hopkins,et al.  Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans , 2014, Nature Communications.

[67]  R. N. Spreng,et al.  The default network and self‐generated thought: component processes, dynamic control, and clinical relevance , 2014, Annals of the New York Academy of Sciences.

[68]  Peter Stiers,et al.  Comparative Analysis of the Macroscale Structural Connectivity in the Macaque and Human Brain , 2014, PLoS Comput. Biol..

[69]  Adam G. Thomas,et al.  Comparison of Human Ventral Frontal Cortex Areas for Cognitive Control and Language with Areas in Monkey Frontal Cortex , 2014, Neuron.

[70]  James K. Rilling,et al.  Comparative primate neuroimaging: insights into human brain evolution , 2014, Trends in Cognitive Sciences.

[71]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[72]  Randy L. Buckner,et al.  The evolution of distributed association networks in the human brain , 2013, Trends in Cognitive Sciences.

[73]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[74]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[75]  Tristan A. Chaplin,et al.  A Conserved Pattern of Differential Expansion of Cortical Areas in Simian Primates , 2013, The Journal of Neuroscience.

[76]  Adam G. Thomas,et al.  The Organization of Dorsal Frontal Cortex in Humans and Macaques , 2013, The Journal of Neuroscience.

[77]  C. Soligo,et al.  Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution , 2013, Proceedings of the Royal Society B: Biological Sciences.

[78]  Galit Yovel,et al.  Face recognition systems in monkey and human: are they the same thing? , 2013, F1000prime reports.

[79]  Haakon G. Engen,et al.  Escaping the here and now: Evidence for a role of the default mode network in perceptually decoupled thought , 2013, NeuroImage.

[80]  M. Corbetta,et al.  Evolutionarily Novel Functional Networks in the Human Brain? , 2013, The Journal of Neuroscience.

[81]  Dante Mantini,et al.  Emerging Roles of the Brain’s Default Network , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[82]  Noam Chomsky,et al.  Evolution, brain, and the nature of language , 2013, Trends in Cognitive Sciences.

[83]  G. Paxinos,et al.  Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates , 2012 .

[84]  John W. Harwell,et al.  Cortical parcellations of the macaque monkey analyzed on surface-based atlases. , 2012, Cerebral cortex.

[85]  S. Everling,et al.  Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations , 2012, Front. Neuroanat..

[86]  Mert R. Sabuncu,et al.  Measuring and comparing brain cortical surface area and other areal quantities , 2012, NeuroImage.

[87]  M. Corbetta,et al.  Inter-species activity correlations reveal functional correspondences between monkey and human brain areas , 2012, Nature Methods.

[88]  Jon H Kaas,et al.  The evolution of neocortex in primates. , 2012, Progress in brain research.

[89]  G. Orban,et al.  Default Mode of Brain Function in Monkeys , 2011, The Journal of Neuroscience.

[90]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[91]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[92]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity , 2011, The Journal of Neuroscience.

[93]  Timothy D. Griffiths,et al.  Orthogonal representation of sound dimensions in the primate midbrain , 2011, Nature Neuroscience.

[94]  Polina Golland,et al.  Functional Geometry Alignment and Localization of Brain Areas , 2010, NIPS.

[95]  John W. Harwell,et al.  Similar patterns of cortical expansion during human development and evolution , 2010, Proceedings of the National Academy of Sciences.

[96]  R. Buckner,et al.  Functional-Anatomic Fractionation of the Brain's Default Network , 2010, Neuron.

[97]  Justin L. Vincent,et al.  Precuneus shares intrinsic functional architecture in humans and monkeys , 2009, Proceedings of the National Academy of Sciences.

[98]  Leah Krubitzer,et al.  In Search of a Unifying Theory of Complex Brain Evolution , 2009, Annals of the New York Academy of Sciences.

[99]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[100]  M. Ehler Applied and Computational Harmonic Analysis , 2008 .

[101]  Leah Krubitzer,et al.  The Magnificent Compromise: Cortical Field Evolution in Mammals , 2007, Neuron.

[102]  D. V. Essen,et al.  Surface-Based and Probabilistic Atlases of Primate Cerebral Cortex , 2007, Neuron.

[103]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[104]  M. Rosa Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. , 2002, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[105]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[106]  J. Price,et al.  Prefrontal cortical projections to the striatum in macaque monkeys: Evidence for an organization related to prefrontal networks , 2000, The Journal of comparative neurology.

[107]  P. Harvey,et al.  Mosaic evolution of brain structure in mammals , 2000, Nature.

[108]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[109]  R. Byrne The Thinking Ape : Evolutionary Origins of Intelligence , 1995 .

[110]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[111]  P S Goldman-Rakic,et al.  Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[112]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[113]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[114]  Peter T. Fox,et al.  Mosaic evolution of brain structure in mammals , 2022 .