Halogens, trace element concentrations, and Sr-Nd isotopes in apatite from iron oxide-apatite (IOA) deposits in the Chilean iron belt: Evidence for magmatic and hydrothermal stages of mineralization

[1]  I. Veksler,et al.  Immiscible hydrous Fe–Ca–P melt and the origin of iron oxide-apatite ore deposits , 2018, Nature Communications.

[2]  M. Reich,et al.  New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit, Chile , 2018 .

[3]  M. Reich,et al.  A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile , 2018, Mineralium Deposita.

[4]  Youngjae Kim,et al.  An ab-initio study of the energetics and geometry of sulfide, sulfite, and sulfate incorporation into apatite: The thermodynamic basis for using this system as an oxybarometer , 2017 .

[5]  M. Whitehouse,et al.  Evidence for hydrothermal alteration and source regions for the Kiruna iron oxide–apatite ore (northern Sweden) from zircon Hf and O isotopes , 2017 .

[6]  A. Simon,et al.  Co-variability of S6+, S4+, and S2− in apatite as a function of oxidation state: Implications for a new oxybarometer , 2017 .

[7]  M. Reich,et al.  Unraveling the origin of the Andean IOCG clan: A Re-Os isotope approach , 2017 .

[8]  A. Simon,et al.  Iron and Oxygen Isotope Signatures of the Pea Ridge and Pilot Knob Magnetite-Apatite Deposits, Southeast Missouri, USA , 2016 .

[9]  D. Harlov,et al.  Mineralogy, chemistry, and fluid-aided evolution of the Pea Ridge Fe oxide-(Y + REE) deposit, southeast Missouri, USA , 2016 .

[10]  F. Velasco,et al.  Immiscible iron- and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): Evidence for a magmatic origin for the magnetite deposits , 2016 .

[11]  D. Harlov,et al.  Hydrothermal mineral replacement reactions for an apatite-monazite assemblage in alkali-rich fluids at 300–600 °C and 100 MPa , 2016 .

[12]  C. McFarlane,et al.  In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, Eastern China: Constraints on fluid metasomatism , 2016 .

[13]  N. Cogné,et al.  (LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards , 2016 .

[14]  D. Harlov,et al.  Fluorapatite-monazite-allanite relations in the Grängesberg apatite-iron oxide ore district, Bergslagen, Sweden , 2016 .

[15]  M. Reich,et al.  Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes , 2015 .

[16]  A. Putnis,et al.  Distribution of halogens between fluid and apatite during fluid-mediated replacement processes , 2015 .

[17]  Mei-Fu Zhou,et al.  Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe–Cu–(REE) deposit, Southwest China , 2015 .

[18]  M. Reich,et al.  Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions , 2015 .

[19]  J. Webster,et al.  Magmatic Apatite: A Powerful, Yet Deceptive, Mineral , 2015 .

[20]  D. Harlov Apatite: A Fingerprint for Metasomatic Processes , 2015 .

[21]  D. Harlov,et al.  KIRUNA-TYPE IRON OXIDE-APATITE DEPOSITS, BAFQ DISTRICT, CENTRAL IRAN: FLUID-AIDED GENESIS OF FLUORAPATITE-MONAZITE-XENOTIME ASSEMBLAGES , 2015 .

[22]  Mei-Fu Zhou,et al.  In situ Sr isotope analysis of apatite by LA-MC-ICPMS: constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China , 2015, Mineralium Deposita.

[23]  G. Beaudoin,et al.  Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS , 2015, Mineralium Deposita.

[24]  A. Doherty,et al.  Partitioning behavior of chlorine and fluorine in felsic melt–fluid(s)–apatite systems at 50MPa and 850–950°C , 2014 .

[25]  A. Williams-Jones,et al.  Hydrothermal Mobilisation of the Rare Earth Elements – a Tale of “Ceria” and “Yttria” , 2012 .

[26]  B. Tikoff,et al.  Isotopic Evolution of the Idaho Batholith and Challis Intrusive Province, Northern US Cordillera , 2011 .

[27]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[28]  F. Holtz,et al.  Sulfur-bearing Magmatic Accessory Minerals , 2011 .

[29]  D. Harlov,et al.  A new semi-micro wet chemical method for apatite analysis and its application to the crystal chemistry of fluorapatite-chlorapatite solid solutions , 2011 .

[30]  Huayong Chen,et al.  The Marcona Magnetite Deposit, Ica, South-Central Peru: A Product of Hydrous, Iron Oxide-Rich Melts? , 2010 .

[31]  J. Naranjo,et al.  Subvolcanic contact metasomatism at El Laco Volcanic Complex, Central Andes , 2010 .

[32]  V. Troll,et al.  REE distribution and mineralogy in a Palaeoproterozoic apatite-iron oxide deposit: Grängesberg, Bergslagen, Sweden , 2010 .

[33]  A. Aiuppa Degassing of halogens from basaltic volcanism: Insights from volcanic gas observations , 2009 .

[34]  A. Putnis Mineral Replacement Reactions , 2009 .

[35]  C. Manning,et al.  Fluorapatite solubility in H2O and H2O–NaCl at 700 to 900 °C and 0.7 to 2.0 GPa , 2008 .

[36]  D. Harlov,et al.  Whole-rock, Phosphate, and Silicate Compositional Trends across an Amphibolite- to Granulite-facies Transition, Tamil Nadu, India , 2007 .

[37]  D. Baker,et al.  Liquidus Equilibria in the System K2O–Na2O–Al2O3–SiO2–F2O−1–H2O to 100 MPa: II. Differentiation Paths of Fluorosilicic Magmas in Hydrous Systems , 2007 .

[38]  S. Klemme,et al.  Trace element partitioning between apatite and silicate melts , 2006 .

[39]  R. Romer,et al.  Nd, Pb, and Sr isotope composition of juvenile magmatism in the Mesozoic large magmatic province of northern Chile (18–27°S): indications for a uniform subarc mantle , 2006 .

[40]  A. P. Douce,et al.  Apatite as a probe of halogen and water fugacities in the terrestrial planets , 2006 .

[41]  N. Karpukhina,et al.  Oxyhalide silicate glasses , 2006 .

[42]  A. A. Kiprianov Regular trends in uptake of halogens by alkali silicate glasses containing two glass-forming components , 2006 .

[43]  C. Heinrich,et al.  100th Anniversary Special Paper: Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits , 2005 .

[44]  R. Wirth,et al.  An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite , 2005 .

[45]  D. Davis,et al.  Testing the apatite-magnetite geochronometer: U-Pb and 40Ar/39Ar geochronology of plutonic rocks, massive magnetite-apatite tabular bodies, and IOCG mineralization in Northern Chile , 2005 .

[46]  M. P. Gorton,et al.  A TEXTURAL AND GEOCHEMICAL GUIDE TO THE IDENTIFICATION OF HYDROTHERMAL MONAZITE: CRITERIA FOR SELECTION OF SAMPLES FOR DATING EPIGENETIC HYDROTHERMAL ORE DEPOSITS , 2004 .

[47]  F. Henríquez,et al.  NEW FIELD EVIDENCE BEARING ON THE ORIGIN OF THE EL LACO MAGNETITE DEPOSIT, NORTHERN CHILE—A DISCUSSION , 2003 .

[48]  Robert Marschik,et al.  Geochemical and Sr–Nd–Pb–O isotope composition of granitoids of the Early Cretaceous Copiapó plutonic complex (27°30′S), Chile , 2003 .

[49]  R. Sillitoe Iron oxide-copper-gold deposits: an Andean view , 2003 .

[50]  D. Harlov,et al.  Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite , 2003 .

[51]  U. Andersson,et al.  Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden , 2002 .

[52]  A. Putnis Mineral replacement reactions: from macroscopic observations to microscopic mechanisms , 2002, Mineralogical Magazine.

[53]  R. Sillitoe,et al.  NEW FIELD EVIDENCE BEARING ON THE ORIGIN OF THE EL LACO MAGNETITE DEPOSIT, NORTHERN CHILE—A REPLY , 2002 .

[54]  B. De Vivo,et al.  Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius , 2002 .

[55]  T. Nijland,et al.  Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: Nature and experiment. Part I. Chlorapatite , 2002 .

[56]  F. Spear,et al.  Apatite, Monazite, and Xenotime in Metamorphic Rocks , 2002 .

[57]  M. Fleet,et al.  Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors , 2002 .

[58]  W. Griffin,et al.  Trace‐element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland , 2001 .

[59]  M. Reed,et al.  The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800 °C and 200 MPa , 2000 .

[60]  Kazuya Takahashi,et al.  JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium , 2000 .

[61]  P. Blanc,et al.  As-BEARING FLUORAPATITE IN MANGANIFEROUS DEPOSITS FROM ST. MARCEL – PRABORNA, VAL D’AOSTA, ITALY , 2000 .

[62]  S. Oishi,et al.  Topotaxial replacement of chlorapatite by hydroxyapatite during hydrothermal ion exchange , 1999 .

[63]  L. Sha,et al.  Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis , 1999 .

[64]  M. Elfman,et al.  Fluid inclusions in magnetite-apatite ore from a cooling magmatic system at El Laco, Chile , 1999 .

[65]  J. Tepper,et al.  Complex zoning in apatite from the Idaho batholith: A record of magma mixing and intracrystalline trace element diffusion , 1999 .

[66]  V. Chevychelov Chlorine Dissolution in Fluid-rich Granitic Melts: The Effect of Calcium Addition , 1999 .

[67]  J. Luhr,et al.  Factors controlling sulfur concentrations in volcanic apatite , 1997 .

[68]  D. K. McDaniel,et al.  Use of surface-controlled REE sectoral zoning in apatite from Llallagua, Bolivia, to determine a single-crystal SmNd age , 1997 .

[69]  D. Dingwell,et al.  The variable influence of P2O5 on the viscosity of melts of differing alkali/aluminium ratio: Implications for the structural role of phosphorus in silicate melts , 1996 .

[70]  P. Treloar,et al.  Variations in F and Cl contents in apatites from magnetite-apatite ores in northern Chile, and their ore-genetic implications , 1996, Mineralogical Magazine.

[71]  M. Barton,et al.  Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization , 1996 .

[72]  A. Zaitsev,et al.  Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source, and the relationships of phoscorites and carbonatites from the Kovdor massif, Kola peninsula, Russia , 1995 .

[73]  F. Bea,et al.  Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study) , 1994 .

[74]  J. Nystroem,et al.  Magmatic Features of Iron Ores of the Kiruna Type in Chile and Sweden: Ore Textures and Magnetite Geochemistry , 1994 .

[75]  Yu Liu,et al.  Some aspects of the crystal-chemistry of apatites , 1993, Mineralogical Magazine.

[76]  N. Métrich,et al.  EXPERIMENTAL STUDY OF CHLORINE BEHAVIOR IN HYDROUS SILICIC MELTS , 1992 .

[77]  Chen Zhu,et al.  Partitioning of F-Cl-OH between minerals and hydrothermal fluids , 1991 .

[78]  F. J. Kruger,et al.  Variation in the composition of apatite through the Merensky cyclic unit in the western Bushveld Complex , 1990 .

[79]  S. Espinoza The Atacama-Coquimbo Ferriferous Belt, Northern Chile , 1990 .

[80]  A. Boudreau,et al.  Investigations of the Stillwater Complex: Part V. Apatites as indicators of evolving fluid composition , 1989 .

[81]  W. Sawka REE and trace element variations in accessory minerals and hornblende from the strongly zoned McMurry Meadows Pluton, California , 1988, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[82]  A. Boudreau,et al.  Halogen Geochemistry of the Stillwater and Bushveld Complexes: Evidence for Transport of the Platinum-Group Elements by Cl-Rich Fluids , 1986 .

[83]  オジャスン,et al.  Tectonic and petrological frame of the Cretaceous iron deposits of North Chile. , 1984 .

[84]  P. Dunn,et al.  A contribution to the crystal chemistry of ellestadite and the silicate sulfate apatites , 1982 .

[85]  E. Watson,et al.  Apatite/liquid partition coefficients for the rare earth elements and strontium , 1981 .

[86]  P. Patchett,et al.  A routine high-precision method for Lu-Hf isotope geochemistry and chronology , 1981 .

[87]  C. F. Park The Iron Ore Deposits of the Pacific Basin , 1972 .