Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes.

[1]  A. Vepsäläinen,et al.  Mitochondrial function and energy metabolism in umbilical cord blood- and bone marrow-derived mesenchymal stem cells. , 2012, Stem cells and development.

[2]  B. Lecka-Czernik Marrow fat metabolism is linked to the systemic energy metabolism. , 2012, Bone.

[3]  Y. Saito,et al.  Sumoylation of MEL1S at lysine 568 and its interaction with CtBP facilitates its repressor activity and the blockade of G-CSF-induced myeloid differentiation , 2011, Oncogene.

[4]  H. Gerhardt,et al.  Laminin-Binding Integrins Induce Dll4 Expression and Notch Signaling in Endothelial Cells , 2011, Circulation research.

[5]  F. Kraemer,et al.  Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes , 2011, BMC Genomics.

[6]  A. Carpentier,et al.  Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. , 2011, The Journal of clinical endocrinology and metabolism.

[7]  B. Spiegelman,et al.  Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. , 2011, The Journal of clinical investigation.

[8]  Kristy L. Townsend,et al.  Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat , 2010, Proceedings of the National Academy of Sciences.

[9]  F. Syed,et al.  Integrative physiology of the aging bone: insights from animal and cellular models , 2010, Annals of the New York Academy of Sciences.

[10]  J. Auwerx,et al.  pRb, a switch between bone and brown fat. , 2010, Developmental cell.

[11]  B. Lecka-Czernik Bone Loss in Diabetes: Use of Antidiabetic Thiazolidinediones and Secondary Osteoporosis , 2010, Current osteoporosis reports.

[12]  R. Baron,et al.  Caloric restriction leads to high marrow adiposity and low bone mass in growing mice , 2010, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[13]  J. Lees,et al.  Rb regulates fate choice and lineage commitment in vivo , 2010, Nature.

[14]  B. Spiegelman,et al.  Transcriptional control of brown fat development. , 2010, Cell metabolism.

[15]  S. Najjar,et al.  Decreased osteoclastogenesis and high bone mass in mice with impaired insulin clearance due to liver-specific inactivation to CEACAM1. , 2010, Bone.

[16]  J. Orava,et al.  Functional brown adipose tissue in healthy adults. , 2009, The New England journal of medicine.

[17]  H. Choi,et al.  The forkhead transcription factor Foxc2 stimulates osteoblast differentiation. , 2009, Biochemical and biophysical research communications.

[18]  Hong Wang,et al.  C/EBPα and the Corepressors CtBP1 and CtBP2 Regulate Repression of Select Visceral White Adipose Genes during Induction of the Brown Phenotype in White Adipocytes by Peroxisome Proliferator-Activated Receptor γ Agonists , 2009, Molecular and Cellular Biology.

[19]  M. Bredella,et al.  Increased bone marrow fat in anorexia nervosa. , 2009, The Journal of clinical endocrinology and metabolism.

[20]  B. Spiegelman,et al.  PRDM16 controls a brown fat/skeletal muscle switch , 2008, Nature.

[21]  Peter Tontonoz,et al.  Fat and beyond: the diverse biology of PPARgamma. , 2008, Annual review of biochemistry.

[22]  B. Riggs,et al.  Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women , 2008, Osteoporosis International.

[23]  C. Kahn,et al.  Developmental Origin of Fat: Tracking Obesity to Its Source , 2007, Cell.

[24]  L. Suva,et al.  Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. , 2007, Endocrinology.

[25]  S. B. Heymsfield,et al.  MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women , 2007, Osteoporosis International.

[26]  A. Davis,et al.  Hypoxic adipocytes pattern early heterotopic bone formation. , 2007, The American journal of pathology.

[27]  S. Soyal,et al.  PGC-1α: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes , 2006, Diabetologia.

[28]  J. Gimble,et al.  Playing with bone and fat , 2006, Journal of cellular biochemistry.

[29]  Y. Wang,et al.  UCP1 deficiency increases susceptibility to diet‐induced obesity with age , 2005, Aging cell.

[30]  B. Lecka-Czernik,et al.  Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR‐γ2 transcription factor and TGF‐β/BMP signaling pathways , 2004, Aging cell.

[31]  M. Lazar,et al.  A futile metabolic cycle activated in adipocytes by antidiabetic agents , 2002, Nature Medicine.

[32]  P. Carlsson,et al.  FOXC2 Is a Winged Helix Gene that Counteracts Obesity, Hypertriglyceridemia, and Diet-Induced Insulin Resistance , 2001, Cell.

[33]  Mara Riminucci,et al.  Bone Marrow Stromal Stem Cells: Nature, Biology, and Potential Applications , 2001, Stem cells.

[34]  G. Wolff,et al.  Physiological consequences of ectopic agouti gene expression: the yellow obese mouse syndrome. , 1999, Physiological genomics.

[35]  Hitoshi Yamashita,et al.  Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese , 1997, nature.

[36]  B. Spiegelman,et al.  Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. , 1995, The Journal of clinical investigation.

[37]  D. Rao,et al.  Bone Loss and Bone Turnover in Diabetes , 1995, Diabetes.

[38]  G. Barsh,et al.  Neomorphic agouti mutations in obese yellow mice , 1994, Nature Genetics.

[39]  S. Moore,et al.  Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. , 1990, Radiology.

[40]  D. Richard,et al.  Brown fat biology and thermogenesis. , 2011, Frontiers in bioscience.

[41]  L. McCabe,et al.  Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. , 2007, Endocrinology.

[42]  S. Soyal,et al.  PGC-1alpha: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes. , 2006, Diabetologia.

[43]  L. Suva,et al.  Bone is a target for the antidiabetic compound rosiglitazone. , 2004, Endocrinology.

[44]  G. Landreth,et al.  Peroxisome Proliferator-Activated Receptor Gamma Agonists , 2003 .